cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A038593 Differences between positive cubes in 1, 2 or 3 ways: union of A014439, A014440 and A014441.

Original entry on oeis.org

7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 721, 728, 784, 817, 819, 866, 875, 919, 936, 973, 988
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    X:= floor(sqrt(N/3)):
    V:= Vector(N):
    for x from 2 to X do
      if x^3 > N then
         y0:= iroot(x^3-N,3);
         if x^3 - y0^3 > N then y0:= y0+1 fi;
      else y0:= 1 fi;
      for y from y0 to x-1 do
         V[x^3 - y^3] := V[x^3 - y^3]+1
      od
    od:
    select(t -> V[t] <= 3 and V[t]>=1, [$1..N]); # Robert Israel, Dec 10 2015
  • Mathematica
    r = 988; p = 3; Sort@Drop[Flatten@Select[Tally@Reap[Do[n = i^p - j^p; If[n <= r, Sow[n]], {i, Ceiling[(r/p)^(1/(p - 1))]}, {j, i}]][[2, 1]], 0 < #[[2]] < 4 &], {2, -1, 2}] (* Arkadiusz Wesolowski, Dec 10 2015 *)

Extensions

Corrected by Don Reble, Nov 19 2006

A181123 Numbers that are the differences of two positive cubes.

Original entry on oeis.org

0, 7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386, 387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702, 721, 728, 784, 817, 819, 866, 875, 919, 936, 973
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

Because x^3-y^3 = (x-y)(x^2+xy+y^2), the difference of two cubes is a prime number only if x=y+1, in which case all the primes are cuban, see A002407.
The difference can be a square (see A038597), but Fermat's Last Theorem prevents the difference from ever being a cube. Beal's Conjecture implies that there are no higher odd powers in this sequence.
If n is in the sequence, it must be x^3-y^3 where 0 < y <= x < n^(1/2). - Robert Israel, Dec 24 2017

Crossrefs

Cf. A024352 (squares), A147857 (4th powers), A181124-A181128 (5th to 9th powers).

Programs

  • Maple
    N:= 10^4: # to get all terms <= N
    sort(convert(select(`<=`, {0, seq(seq(x^3-y^3, y=1..x-1),x=1..floor(sqrt(N)))}, N),list)); # Robert Israel, Dec 24 2017
  • Mathematica
    nn=10^5; p=3; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]
    With[{nn=60},Take[Union[Abs[Flatten[Differences/@Tuples[ Range[ nn]^3,2]]]], nn]] (* Harvey P. Dale, May 11 2014 *)
  • PARI
    list(lim)=my(v=List([0]),a3); for(a=2,sqrtint(lim\3), a3=a^3; for(b=if(a3>lim,sqrtnint(a3-lim-1,3)+1,1), a-1, listput(v,a3-b^3))); Set(v) \\ Charles R Greathouse IV, Jan 25 2018

A050801 Numbers k such that k^2 is expressible as the sum of two positive cubes in at least one way.

Original entry on oeis.org

3, 4, 24, 32, 81, 98, 108, 168, 192, 228, 256, 312, 375, 500, 525, 588, 648, 671, 784, 847, 864, 1014, 1029, 1183, 1225, 1261, 1323, 1344, 1372, 1536, 1824, 2048, 2187, 2496, 2646, 2888, 2916, 3000, 3993, 4000, 4200, 4225, 4536, 4563, 4644, 4704, 5184, 5324
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

Analogous solutions exist for the sum of two identical cubes z^2 = 2*r^3 (e.g., 864^2 = 2*72^3). Values of 'z' are the terms in A033430, values of 'r' are the terms in A001105.
First term whose square can be expressed in two ways is 77976; 77976^2 = 228^3 + 1824^3 = 1026^3 + 1710^3. - Jud McCranie
First term whose square can be expressed in three ways is 3343221000; 3343221000^2 = 279300^3 + 2234400^3 = 790020^3 + 2202480^3 = 1256850^3 + 2094750^3.
First term whose square can be expressed in four ways <= 42794271007595289; 42794271007595289^2 = 14385864402^3 + 122279847417^3 = 55172161278^3 + 118485773289^3 = 64117642953^3 + 116169722214^3 = 96704977369^3 + 97504192058^3.
First term whose square can be expressed in five ways <= 47155572445935012696000; 47155572445935012696000^2 = 94405759361550^3 + 1305070263601650^3 = 374224408544280^3 + 1294899176535720^3 = 727959282778000^3 + 1224915311765600^3 = 857010857812200^3 + 1168192425418200^3 = 1009237516560000^3 + 1061381454915600^3.
After a(1) = 3 this is always composite, because factorization of the polynomial a^3 + b^3 into irreducible components over Z is a^3 + b^3 = (b+a)*(b^2 - ab + b^2). They may be semiprimes, as with 671 = 11 * 61, and 1261 = 13 * 97. The numbers can be powers in various ways, as with 32 = 2^5, 81 = 3^4, 256 = 2^8, 784 = 2^4 * 7^2 , 1225 = 5^2 * 7^2, and 2187 = 3^7. - Jonathan Vos Post, Feb 05 2011
If n is a term then n*b^3 is also a term for any b, e.g., 3 is a term hence 3*2^3 = 24, 3*3^3 = 81 and also 3*4^3 = 192 are terms. Sequence of primitive terms may be of interest. - Zak Seidov, Dec 11 2013
First noncubefree primitive term is 168 = 21*2^3 (21 is not a term of the sequence). - Zak Seidov, Dec 16 2013
From XU Pingya, Apr 10 2021: (Start)
Every triple (a, b, c) (with a^2 = b^3 + c^3) can produce a nontrivial parametric solution (x, y, z) of the Diophantine equation x^2 + y^3 + z^3 = d^4.
For example, to (1183, 65, 104), there is such a solution (d^2 - (26968032*d)*t^3 + 1183*8232^3*t^6, (376*d)*t - 65*8232^2*t^4, (92*d)*t - 104*8232^2*t^4).
To (77976, 228, 1824), there is (d^2 - (272916*d)*t^3 + 77976*57^3*t^6, (52*d)*t - 228*57^2*t^4, (74*d)*t - 1824*57^2*t^4).
Or to (77976, 1026, 1719), there is (d^2 - (25992*d)*t^3 + 77976*19^3*t^6, (37*d)*t - 1026*19^2*t^4, (11*d)*t - 1710*19^2*t^4). (End)

Examples

			1183^2 = 65^3 + 104^3.
		

References

  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

Programs

  • Maple
    A050801 := proc(n)
        option remember ;
        local a,x,y ;
        if n =1 then
            3
        else
            for a from procname(n-1)+1 do
                for x from 1 do
                    if x^3 >= a^2 then
                        break ;
                    end if;
                    for y from 1 to x do
                        if x^3+y^3 = a^2 then
                            return a ;
                        end if;
                    end do:
                end do:
            end do:
        end if;
    end proc:
    seq(A050801(n),n=1..20) ; # R. J. Mathar, Jan 22 2025
  • Mathematica
    Select[Range[5350], Reduce[0 < x <= y && #^2 == x^3 + y^3, {x,y}, Integers] =!= False &] (* Jean-François Alcover, Mar 30 2011 *)
    Sqrt[#]&/@Union[Select[Total/@(Tuples[Range[500],2]^3),IntegerQ[ Sqrt[ #]]&]] (* Harvey P. Dale, Mar 06 2012 *)
    Select[Range@ 5400, Length@ DeleteCases[PowersRepresentations[#^2, 2, 3], w_ /; Times @@ w == 0] > 0 &] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    is(n)=my(N=n^2); for(k=sqrtnint(N\2,3),sqrtnint(N-1,3), if(ispower(N-k^3,3), return(n>1))); 0 \\ Charles R Greathouse IV, Dec 13 2013

Formula

a(n) = sqrt(A050802(n)). - Jonathan Sondow, Oct 28 2013

Extensions

More terms from Michel ten Voorde and Jud McCranie

A106265 Numbers a > 0 such that the Diophantine equation a + b^2 = c^3 has integer solutions b and c.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 35, 39, 40, 44, 45, 47, 48, 49, 53, 54, 55, 56, 60, 61, 63, 64, 67, 71, 72, 74, 76, 79, 81, 83, 87, 89, 95, 100, 104, 106, 107, 109, 112, 116, 118, 121, 124, 125, 126, 127, 128, 135, 139, 143, 146, 147, 148, 150, 151, 152, 153
Offset: 1

Views

Author

Zak Seidov, Apr 28 2005

Keywords

Comments

A given a(n) can have multiple solutions with distinct (b,c), e.g., a=4 with b=2, c=2 (4 + 2^2 = 2^3) or with b=11, c=5 (4 + 11^2 = 5^3). (See also A181138.) Sequences A106266 and A106267 list the minimal values. - M. F. Hasler, Oct 04 2013
The cubes A000578 = (1, 8, 27, 64, ...) form a subsequence of this sequence, corresponding to b=0, a=c^3. If b=0 is excluded, these terms are not present, except for a few exceptions, a = 216, 343, 12167, ... (6^3 + 28^2 = 10^3, 7^3 + 13^2 = 8^3, 23^3 + 588^2 = 71^3, ...), cf. A038597 for the possible b-values. - M. F. Hasler, Oct 05 2013
This is the complement of A081121. The values do indeed correspond to solutions listed in Gebel's file. - M. F. Hasler, Oct 05 2013
B-file corrected following a remark by Alois P. Heinz, May 24 2019. A double-check would be appreciated in view of two values that were missing, for unknown reasons, in the earlier version of the b-file. - M. F. Hasler, Aug 10 2024

Examples

			a = 1,2,4,7,8,11,13,15,18,19,20,23,25,26,27,28,35,39,40,44,45,47,48,49,53, ...
b = 0,5,2,1,0, 4,70, 7, 3,18,14, 2,10, 1, 0, 6,36, 5,52, 9,96,13,4,524,26, ...
c = 1,3,2,2,2, 3,17, 4, 3, 7, 6, 3, 5, 3, 3, 4,11, 4,14, 5,21, 6, 4,65, 9, ...
Here are the values grouped together:
{{1, 0, 1}, {2, 5, 3}, {4, 2, 2}, {7, 1, 2}, {8, 0, 2}, {11, 4, 3}, {13, 70, 17}, {15, 7, 4}, {18, 3, 3}, {19, 18, 7}, {20, 14, 6}, {23, 2, 3}, {25, 10, 5}, {26, 1, 3}, {27, 0, 3}, {28, 6, 4}, {35, 36, 11}, {39, 5, 4}, {40, 52, 14}, {44, 9, 5}, {45, 96, 21}, {47, 13, 6}, {48, 4, 4}, {49, 524, 65}, {53, 26, 9}, {54, 17, 7}, {55, 3, 4}, {56, 76, 18}, {60, 2, 4}, {61, 8, 5}, {63, 1, 4}, {64, 0, 4}, {67, 110, 23}, {71, 21, 8}, ... }
a(2243) = 10000 = 25^3 - 75^2. - _M. F. Hasler_, Oct 05 2013, index corrected Aug 10 2024
a(136) = 366 = 11815^3 - 1284253^2 (has c/a(n) ~ 32.3); a(939) = 3607 = 244772^3 - 121099571^2 (has c/a(n) ~ 67.9); a(1090) = 4265 = 84521^3 - 24572364^2 (has c/a(n) ~ 19.8). - _M. F. Hasler_, Aug 10 2024
		

Crossrefs

Cf. A106266, A106267 for respective minimal values of b and c.
Cf. A023055: (Apparent) differences between adjacent perfect powers (integers of form a^b, a >= 1, b >= 2); A076438: n which appear to have a unique representation as the difference of two perfect powers; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1; A076440: n which appear to have a unique representation as the difference of two perfect powers and one of those powers is odd; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1 and that solution has odd x or odd y (or both odd); A075772: Difference between n-th perfect power and the closest perfect power, etc.

Programs

  • Mathematica
    f[n_] := Block[{k = Floor[n^(1/3) + 1]}, While[k < 10^6 && !IntegerQ[ Sqrt[k^3 - n]], k++ ]; If[k == 10^6, 0, k]]; Select[ Range[ 154], f[ # ] != 0 &] (* Robert G. Wilson v, Apr 28 2005 *)
  • PARI
    select( {is_A106265(a, L=99)=for(c=sqrtnint(a, 3), (a+9)*L, issquare(c^3-a, &b) && return(c))}, [1..199]) \\ The function is_A106265 returns 0 if n isn't a term, or else the c-value (A106267) which can't be zero if n is a term. The L-value can be used to increase the search limit but so far no instance is known that requires L>68. - M. F. Hasler, Aug 10 2024

Formula

a(n) = A106267(n)^3 - A106266(n)^2.

Extensions

More terms from Robert G. Wilson v, Apr 28 2005
Definition corrected, solutions with b=0 added by M. F. Hasler, Sep 30 2013

A038596 Squares that are a difference between 2 positive cubes.

Original entry on oeis.org

169, 784, 2401, 10816, 21609, 32761, 35721, 50176, 123201, 130321, 150544, 153664, 257049, 301401, 345744, 456976, 571536, 692224, 1058841, 1382976, 1750329, 1874161, 2030625, 2096704, 2286144, 2640625, 3211264, 3467044, 3651921, 3694084, 5285401, 5546025
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    is(n)=for(k=sqrtnint(n,3)+1,(sqrtint(12*n-3)+3)\6,if(ispower(n-k^3,3), return(issquare(n)))); 0 \\ Charles R Greathouse IV, Oct 28 2013
    
  • PARI
    mm=820188; cb=vector(mm); for(i=1, mm, cb[i]=i^3); mb=1420608; v=vector(mb); mx=mb^2; for(i=1, mm-1, for(j=i+1, mm, d=cb[j]-cb[i]; if(d<=mx, if(issquare(d, &r), v[r]=1), next(2)))); c=0; for(n=1, mb, if(v[n]==1, c++; write("b038596.txt", c " " n^2))) \\ Donovan Johnson, Oct 31 2013

Formula

a(n) = A038597(n)^2. - M. F. Hasler, Oct 05 2013

Extensions

More terms from Jud McCranie

A038598 First differences between numbers that are a difference between 2 positive cubes.

Original entry on oeis.org

7, 12, 7, 11, 19, 5, 2, 28, 7, 19, 7, 3, 25, 17, 20, 19, 7, 2, 1, 53, 8, 17, 20, 15, 4, 7, 44, 1, 10, 51, 21, 16, 3, 16, 7, 2, 34, 55, 2, 27, 26, 8, 37, 19, 7, 56, 33, 2, 47, 9, 44, 17, 37, 15, 4, 7, 17, 11, 88, 26, 37, 19, 9, 10, 45, 6, 37, 19, 7, 22, 33, 2, 26, 55, 44, 7, 19, 65, 44, 10, 7
Offset: 1

Views

Author

Keywords

Crossrefs

First differences of A181123.

Extensions

Extended by Ray Chandler, Nov 29 2008
Offset corrected and a(1)=7 inserted by Sean A. Irvine, Jan 23 2021

A050802 Squares expressible as the sum of two positive cubes in at least one way.

Original entry on oeis.org

9, 16, 576, 1024, 6561, 9604, 11664, 28224, 36864, 51984, 65536, 97344, 140625, 250000, 275625, 345744, 419904, 450241, 614656, 717409, 746496, 1028196, 1058841, 1399489, 1500625, 1590121, 1750329, 1806336, 1882384, 2359296
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Examples

			E.g., 717409 = 847^2 = 33^3 + 88^3.
169 = 13^2 = (-7)^3 + 8^3 is not a member, because 169 is not the sum of two positive cubes. - _Jonathan Sondow_, Oct 28 2013
		

References

  • "Game, Set and Math" by Ian Stewart, Chapter 8 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

Programs

  • Mathematica
    ok[n_] := Length[Select[PowersRepresentations[n, 2, 3], #[[1]] != 0 & ]] >= 1; Select[Range[1600]^2, ok]
    (* Jean-François Alcover, Apr 22 2011 *)
    Union[Select[Total/@Tuples[Range[250]^3,2],IntegerQ[Sqrt[#]]&]] (* Harvey P. Dale, Mar 04 2012 *)
  • PARI
    { nstart=1; a2start=9; n=nstart; a=sqrtint(a2start)-1; until (0, a=a+1; a2=a*a; b1=((a2/2)^(1/3))\1; for (b=b1, a, b3=b*b*b; c1=1; if (a2 > b3, c1=((a2-b3)^(1/3))\1;); for (c=c1, b, d=b3 + c*c*c; if (d > a2 && c == 1, break(2)); if (d > a2, break); if (a2 == d, print(n, " ", a2); write("b050802.txt", n, " ", a2); n=n+1; break(2); ); ) ) ) } \\ Harry J. Smith, Jan 15 2009
    
  • PARI
    is(n)=for(k=sqrtnint((n+1)\2,3),sqrtnint(n-1,3),if(ispower(n-k^3,3),return(issquare(n))));0 \\ Charles R Greathouse IV, Oct 28 2013

Formula

a(n) = A050801(n)^2. - Jonathan Sondow, Oct 28 2013

Extensions

More terms from Michel ten Voorde
Definition corrected by Jonathan Sondow, Oct 28 2013

A228946 Numbers m such that m^3 - k^3 is a square for some k < m, k > 0.

Original entry on oeis.org

8, 10, 14, 28, 32, 33, 40, 56, 57, 65, 71, 72, 74, 78, 90, 105, 112, 114, 126, 128, 130, 132, 140, 148, 154, 155, 160, 176, 193, 200, 217, 218, 224, 228, 250, 252, 260, 266, 273, 280, 284, 288, 296, 297, 305, 312, 329, 336, 344, 349, 350, 360, 392
Offset: 1

Views

Author

M. F. Hasler, Oct 05 2013

Keywords

Comments

See A038596 = A038597^2 for the possible values of n^3-k^3.

Crossrefs

Programs

Formula

a(n) = A066648(n)^(1/3). - Amiram Eldar, Mar 20 2025

A230716 Numbers whose square is both a sum and a difference of two positive cubes.

Original entry on oeis.org

588, 1029, 1323, 2888, 4704, 8232, 8281, 9747, 10584, 15876, 23104, 27783, 33124, 35113, 35721, 37632, 47089, 65856, 66248, 73500, 74529, 77976, 84672, 103544, 114075, 127008, 127896, 128625, 165375, 184832, 201684, 222264, 223587, 263169, 264992, 280904
Offset: 1

Views

Author

Jonathan Sondow, Oct 28 2013

Keywords

Comments

Intersection of A050801 and A038597.
a(5)-a(24) are computed from Donovan Johnson's extension of A230717.

Examples

			588^2 = 14^3 + 70^3 = 71^3 - 23^3.
		

References

  • Ian Stewart, "Game, Set and Math", Dover, 2007, Chapter 8 'Close Encounters of the Fermat Kind', pp. 107-124.

Crossrefs

Formula

a(n)^2 = a^3 + b^3 = c^3 - d^3 for some natural numbers a, b, c, d.
a(n) = sqrt(A230717(n)).

A230717 Squares that are both a sum and a difference of two positive cubes.

Original entry on oeis.org

345744, 1058841, 1750329, 8340544, 22127616, 67765824, 68574961, 95004009, 112021056, 252047376, 533794816, 771895089, 1097199376, 1232922769, 1275989841, 1416167424, 2217373921, 4337012736, 4388797504, 5402250000, 5554571841, 6080256576, 7169347584, 10721359936
Offset: 1

Views

Author

Jonathan Sondow, Oct 28 2013

Keywords

Comments

Intersection of A050802 and A038596.
Square terms of sequence A225908. - Michel Marcus, Apr 22 2016

Examples

			345744 = 588^2 = 14^3 + 70^3 = 71^3 - 23^3.
		

References

  • Ian Stewart, "Game, Set and Math", Dover, 2007, Chapter 8 'Close Encounters of the Fermat Kind', pp. 107-124.

Crossrefs

Programs

  • PARI
    isA038596(n)=for(k=sqrtnint(n,3)+1,(sqrtint(12*n-3)+3)\6,if(ispower(n-k^3,3), return(issquare(n)))); 0
    isA050802(n)=for(k=sqrtnint((n+1)\2, 3), sqrtnint(n-1, 3), if(ispower(n-k^3, 3), return(issquare(n)))); 0
    is(n)=isA038596(n) && isA050802(n) \\ Charles R Greathouse IV, Oct 28 2013

Formula

a(n) = k^2 = a^3 + b^3 = c^3 - d^3 for some natural numbers k, a, b, c, d.
a(n) = A230716(n)^2.

Extensions

a(5)-a(24) from Donovan Johnson, Oct 28 2013
Showing 1-10 of 11 results. Next