A038761 a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=9.
1, 9, 53, 309, 1801, 10497, 61181, 356589, 2078353, 12113529, 70602821, 411503397, 2398417561, 13979001969, 81475594253, 474874563549, 2767771787041, 16131756158697, 94022765165141, 548004834832149, 3194006243827753, 18616032628134369, 108502189524978461
Offset: 0
Examples
A038762(3)^2 - 2*a(4)^2 = 2547^2 - 2*1801^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- M. J. DeLeon, Pell's Equation and Pell Number Triples, Fib. Quart., 14(1976), pp. 456-460.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Magma
I:=[1, 9]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
-
Maple
a[0]:=1: a[1]:=9: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..19); # Zerinvary Lajos, Jul 26 2006
-
Mathematica
LinearRecurrence[{6,-1},{1,9},40] (* Vincenzo Librandi, Nov 16 2011 *)
-
PARI
a(n)=([0,1; -1,6]^n*[1;9])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
Formula
a(n) = (9*((3+2*sqrt(2))^n -(3-2*sqrt(2))^n)-((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)).
a(n) = sqrt(2*(A038762(n))^2-14)/2.
For n>0, a(n)=A046090(n)+A001653(n)+A001652(n-1)=A055997(n+1)+A001652(n-1); e.g., 309=120+169+20. - Charlie Marion, Oct 11 2006
G.f.: (1+3*x)/(1-6*x+x^2). - Philippe Deléham, Nov 03 2008
a(n) = third binomial transform of 1,6,8,48,64,384. - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
a(n) = irrational part of z(n) = (3 + sqrt(2))*(3 + 2*sqrt(2))^n, n >= 0. z(n) gives only part of the general positive solutions to the Pell equation x^2 - 2*y^2 = 7. See the Nagell reference in A038762 on how to find z(n), and a comment above. - Wolfdieter Lang, Feb 05 2015
a(n) = S(n, 6) + 3*S(n-1, 6), n >= 0, with the Chebyshev S-polynomials evaluated at x=6. See S(n-1, 6) = A001109(n). - Wolfdieter Lang, Mar 30 2015
E.g.f.: exp(3*x)*(2*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x))/2. - Stefano Spezia, Mar 16 2024
Extensions
Edited: Replaced the unspecific Pell comment. Moved a formula from the comment section to the formula section. - Wolfdieter Lang, Feb 05 2015
Comments