A129345 a(2n) = A001542(n+1), a(2n+1) = A038761(n+1); a Pellian-related sequence.
2, 9, 12, 53, 70, 309, 408, 1801, 2378, 10497, 13860, 61181, 80782, 356589, 470832, 2078353, 2744210, 12113529, 15994428, 70602821, 93222358, 411503397, 543339720, 2398417561, 3166815962, 13979001969, 18457556052, 81475594253, 107578520350, 474874563549
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Programs
-
Mathematica
CoefficientList[Series[(2 + 9 x - x^3)/((x^2 + 2 x - 1) (x^2 - 2 x - 1)), {x, 0, 29}], x] (* Michael De Vlieger, May 26 2016 *) LinearRecurrence[{0,6,0,-1},{2,9,12,53},30] (* Harvey P. Dale, Apr 29 2025 *)
-
PARI
Vec((2+9*x-x^3)/((x^2+2*x-1)*(x^2-2*x-1)) + O(x^40)) \\ Colin Barker, May 26 2016
Formula
G.f.: (2+9*x-x^3)/((x^2+2*x-1)*(x^2-2*x-1)).
From Colin Barker, May 26 2016: (Start)
a(n) = ((-1-sqrt(2))^(1+n)-(-1+sqrt(2))^(1+n)+(1-sqrt(2))^n*(-4+3*sqrt(2))+(1+sqrt(2))^n*(4+3*sqrt(2)))/(2*sqrt(2)).
a(n) = 6*a(n-2)-a(n-4) for n>3.
(End)
Comments