A039622 Number of n X n Young tableaux.
1, 1, 2, 42, 24024, 701149020, 1671643033734960, 475073684264389879228560, 22081374992701950398847674830857600, 220381378415074546123953914908618547085974856000, 599868742615440724911356453304513631101279740967209774643120000
Offset: 0
Examples
Using the hook length formula, a(4) = (16)!/(7*6^2*5^3*4^4*3^3*2^2) = 24024.
References
- M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 284.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..30
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- Joerg Arndt, The a(3)=42 3 X 3 Young tableaux
- J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc., 50 (No. 3, March 2003), 341-353. See p. 349.
- J. B. Conrey, Review of H. Iwaniec, "Lectures on the Riemann Zeta Function" (AMS, 2014), Bull. Amer. Math. Soc., 53 (No. 3, 2016), 507-512.
- P.-O. Dehaye, Combinatorics of the lower order terms in the moment conjectures: the Riemann zeta function, arXiv preprint arXiv:1201.4478 [math.NT], 2012.
- J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of a symmetric group, Canad. J. Math. 6 (1954), pp. 316-324.
- Curtis Greene and Brady Haran, Shapes and Hook Numbers, Numberphile video (2016)
- Curtis Greene and Brady Haran, Shapes and Hook Numbers (extra footage) (2016)
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- Alejandro H. Morales, I. Pak, and G. Panova, Why is pi < 2 phi?, Preprint, 2016; The American Mathematical Monthly, Volume 125, 2018 - Issue 8.
- Alan H. Rapoport (proposer), Solution to Problem 639: A Square Young Tableau, College Mathematics Journal, Vol. 30 (1999), no. 5, pp. 410-411.
- Index entries for sequences related to Young tableaux.
Crossrefs
Programs
-
Magma
A039622:= func< n | n eq 0 select 1 else Factorial(n^2)*(&*[Factorial(j)/Factorial(n+j): j in [0..n-1]]) >; [A039622(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
-
Maple
a:= n-> (n^2)! *mul(k!/(n+k)!, k=0..n-1): seq(a(n), n=0..12); # Alois P. Heinz, Apr 10 2012
-
Mathematica
a[n_]:= (n^2)!*Product[ k!/(n+k)!, {k, 0, n-1}]; Table[ a[n], {n, 0, 12}] (* Jean-François Alcover, Dec 06 2011, after Pari *)
-
PARI
a(n)=(n^2)!*prod(k=0,n-1,k!/(n+k)!)
-
Sage
def A039622(n): return factorial(n^2)*product( factorial(j)/factorial(n+j) for j in (0..n-1)) [A039622(n) for n in (0..12)] # G. C. Greubel, Apr 21 2021
Formula
a(n) = (n^2)! / Product_{k=1..2n-1} k^(n - |n-k|).
a(n) = 0!*1!*...*(k-1)! *(k*n)! / ( n!*(n+1)!*...*(n+k-1)! ) for k=n.
a(n) = A153452(prime(n)^n). - Naohiro Nomoto, Jan 01 2009
a(n) ~ sqrt(Pi) * n^(n^2+11/12) * exp(n^2/2+1/12) / (A * 2^(2*n^2-7/12)), where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 10 2015
From Peter Luschny, May 20 2019: (Start)
a(n) = (G(1+n)*G(2+n)^(2-n)*(n^2)!*(G(3+n)/Gamma(2+n))^(n-1))/(G(1+2*n)*n!) where G(x) is the Barnes G function.
a(n) = (Gamma(n^2 +1)/Gamma(n+1))*(G(n+1)*G(n+2)/G(2*n+1)), where G(n) is the Barnes G-function. - G. C. Greubel, Apr 21 2021
a(n+2) = (n+2) * A060856(n+1) for n >= 0. - Tom Copeland, May 30 2022
Comments