cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055879 Least nondecreasing sequence with a(1) = 1 and Hankel transform {1,1,1,1,...}.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 15, 15, 51, 51, 188, 188, 731, 731, 2950, 2950, 12235, 12235, 51822, 51822, 223191, 223191, 974427, 974427, 4302645, 4302645, 19181100, 19181100, 86211885, 86211885, 390248055, 390248055, 1777495635, 1777495635, 8140539950, 8140539950
Offset: 1

Views

Author

John W. Layman, Jul 15 2000

Keywords

Comments

Hankel transform {t(n)} of {a(n)} is given by t(n) = Det[{a(1), a(2), ..., a(n)}, {a(2), a(3), ..., a(n+1)}, ..., {a(n), a(n+1), ..., a(2n-1)}].
The bisections of this sequence appear to be the binomial transform of the Catalan numbers, A007317. If that is true then the g.f. for this sequence is (1/(2*x))*( 1 + x - (1-x)^(-1)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2)), which occurs in the Cyvin et al. reference.
Self-convolution yields A039658 (shifted left), which is related to enumeration of edge-rooted catafusenes. - Paul D. Hanna, Aug 08 2008

Examples

			G.f.: x + x^2 + 2*x^3 + 2*x^4 + 5*x^5 + 5*x^6 + 15*x^7 + 15*x^8 + 51*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, With[ {m = n - 1}, SeriesCoefficient[ Nest[ 1 / (1 - x - x^2 / (1 + x - x^2 #)) &, 1, Quotient[ m + 1, 2]], {x, 0, m}]]]; (* Michael Somos, Jul 01 2011 *)
    CoefficientList[Series[Sqrt[(1 + x) (1 - 3 x^2 - Sqrt[1 - 6 x^2 + 5 x^4])/(2 (1 - x))]/x^2, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2014 *)
  • PARI
    a(n)=n--; local(A=1+x+x*O(x^n));for(i=0,n,B=subst(A,x,-x);A=1+x*A+x^2*A*B);polcoeff(A,n)
    
  • PARI
    a(n)=n++; polcoeff(sqrt((1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4 +x^4*O(x^n)))/(2*(1-x))),n) \\ Paul D. Hanna, Aug 08 2008
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n))}; /* Michael Somos, Jul 01 2011 */

Formula

G.f.: A(x) = sqrt( (1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4))/(2*(1-x)) ). G.f. satisfies: A(x) = 1 + x*A(x) + x^2*A(x)*A(-x). - Paul D. Hanna, Aug 08 2008
G.f.: 1/(1-x-x^2/(1+x-x^2/(1-x-x^2/(1+x-x^2/(1-... (continued fraction). - Paul Barry, Feb 11 2009
D-finite with recurrence (n+1)*a(n) - a(n-1) + (-6*n+11)*a(n-2) + 5*a(n-3) + 5*(n-4)*a(n-4) = 0. - R. J. Mathar, Nov 26 2012
G.f.: sqrt((1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4))/(2*(1-x)))/x. - Vaclav Kotesovec, Feb 13 2014
a(n) ~ (5+sqrt(5) - (-1)^n*(5-sqrt(5))) * sqrt(2) * 5^(n/2) / (8 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
a(n) = a(n-1) if n is even. a(n) = a(n-1)+A002212((n-1)/2) if n is odd. [Cyvin (1992) eq (14)] - R. J. Mathar, Dec 15 2020

Extensions

More terms from Vincenzo Librandi, Feb 14 2014

A026118 Number of polyhexes of class PF2 (with two catafusenes annealated to pyrene).

Original entry on oeis.org

5, 20, 100, 431, 1937, 8548, 38199, 171001, 770934, 3492251, 15905897, 72785480, 334571647, 1544203452, 7154247842, 33260560977, 155126129968, 725639264293, 3403612632885, 16004969728270, 75437244856898, 356337397010035, 1686618801843050
Offset: 6

Views

Author

Keywords

Comments

See reference for precise definition.
From Petros Hadjicostas, Jan 13 2019: (Start)
This sequence is defined by eq. (34), p. 536, in Cyvin et al. (1992). It is denoted by 2^Q_{4+n} (for n >= 2). Thus, a(n+4) = 2^Q_{4+n} for n >= 2 (and that is why the offset here is 6).
For n >= 2, we have a(n+4) = (3/4)*(1 + (-1)^n)*N(floor(n/2)) + (1/4)*(L(n) + 13*Sum_{1 <= i <= n-1} N(i)*N(n-i)), where N(n) = A002212(n) and L(n) = A039658(n).
The sequence (N(n): n >= 1) = (A002212(n): n >= 1) is given by eq. (1), p. 533, in Cyvin et al. (1992), while its g.f. is given by eqs. (2)-(4), p. 1174, in Cyvin et al. (1994). (The g.f. of N(n) = A002212(n) appears also in Harary and Read (1970) as eq. (9) on p. 4.)
The sequence (L(n): n >= 1) = (A039658(n): n >= 1) is given by eq. (22), p. 535, in Cyvin et al (1992), while its g.f. is given by eq. (9), p. 1175, in Cyvin et al. (1994).
The g.f. of the current sequence (a(m): m >= 6) (see below) is given in eq. (A2), p. 1180, in Cyvin et al. (1994), but it can be derived by the above formulae using standard techniques for the calculation of g.f.'s.
For the number of polyhexes of class PF2, we have 1^Q_h = A026106(h) (h >= 5, one catafusene annealated to pyrene), 3^Q_h = A026298(h) (h >= 7, three catafusenes annealated to pyrene), and 4^Q_h = A030519(h) (h >= 8, four catafusenes annealated to pyrene).
(Apparently, the word "annealated" in Cyvin et al. (1992) is spelled "annelated" in Cyvin et al. (1994).)
(End)

Crossrefs

Formula

From Petros Hadjicostas, Jan 14 2019: (Start)
a(n+4) = (3/4)*(1 + (-1)^n)*N(floor(n/2)) + (1/4)*(L(n) + 13*Sum_{1 <= i <= n-1} N(i)*N(n-i)) for n >= 2, where N(n) = A002212(n) and L(n) = A039658(n).
G.f.: (x^2/4)*(1-x)^(-1)*(10 - 48*x + 74*x^2 - 38*x^3) - (x^2/8)*[13*(1 - 3*x)*(1 - x)^(1/2)*(1 - 5*x)^(1/2) + (1 - x)^(-1)*(7 - 5*x)*(1 - x^2)^(1/2)*(1 - 5*x^2)^(1/2)] (see eq. (A2), p. 1180, in Cyvin et al. (1994)).
(End)

Extensions

Name edited by Petros Hadjicostas, Jan 13 2019
Terms a(17)-a(28) computed by Petros Hadjicostas, Jan 13 2019 using a g.f. in Cyvin et al. (1994)

A030532 Number of polyhexes of class PF2 with symmetry point group C_s.

Original entry on oeis.org

0, 1, 6, 35, 168, 807, 3738, 17326, 79909, 369330, 1709087, 7929590, 36880231, 171981241, 804008476, 3767969067, 17699758030, 83328230588, 393123455667, 1858351021018, 8801159427825, 41756067216508, 198437454009869, 944521139813575, 4502419756667924
Offset: 4

Views

Author

Keywords

Comments

See reference for precise definition.
Cyvin has incorrect a(13)=369366 and a(14)=1709123 in Table III due to using incorrect values for A026298(13) and A026298(14) in Table II.

Crossrefs

Programs

  • PARI
    L(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4))/(2*x^2*(1-x)), n); \\ A039658
    Lp(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660
    M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879
    N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212
    Mp(n) = N(n) - sum(j=0, n-1, N(j)); \\ A039919
    b(n) = N(n+3) - 6*N(n+2) - Mp(floor((n+1)/2)) + (41*N(n+1)-21*N(n)-L(n))/4 - (M(n+3)-M(n+2)+M(n)-if (!(n%2),M(n/2))+Lp(n))/2;
    a(n) = if (n<=4, 0, b(n-4)); \\ Michel Marcus, Apr 05 2020

Formula

a(n+4) = N(n+3) - 6*N(n+2) - M'(floor((n+1)/2)) + (41*N(n+1)-21*N(n)-L(n))/4 - (M(n+3)-M(n+2)+M(n)-e(n)*M(n/2)+L'(n))/2 where N(n)=A002212(n), M(n)=A055879(n), M'(n)=A039919(n), L(n)=A039658(n), L'(n)=A039660(n), e(n)=1 if n is even and 0 if n is odd. - Sean A. Irvine, Apr 03 2020

Extensions

a(13) and a(14) corrected, title improved, and more terms from Sean A. Irvine, Apr 03 2020

A026106 Number of polyhexes of class PF2 (with one catafusene annealated to pyrene).

Original entry on oeis.org

2, 5, 16, 55, 208, 817, 3336, 13935, 59406, 257079, 1126948, 4992421, 22318048, 100546543, 456055730, 2080872845, 9544572590, 43984730855, 203550840696, 945562887981, 4407586685688, 20609668887723, 96646196091276, 454402001079165
Offset: 5

Views

Author

Keywords

Comments

See reference for precise definition.
From Petros Hadjicostas, Jan 12 2019: (Start)
In Cyvin et al. (1992), sequence (N(m): m >= 1) = (A002212(m): m >= 1) is defined by eq. (1), p. 533. (We may let N(0) := A002212(0) = 1.)
Sequence (M(m): m >= 1) is defined by eq. (13), p. 534. We have M(2*m) = M(2*m-1) = A007317(m) for m >= 1.
Sequences (N(m): m >= 1) and (M(m): m >= 1) appear in Table 1, p. 533.
The current sequence is denoted by 1^Q_(4+n) (with n = 1,2,3,...). Thus, a(n+4) = 1^Q_(4+n) for n >= 1; i.e., a(m) = 1^Q_{m} for m >= 5. We have 1^Q_(4+n) = (1/2)*(3*N(n) + M(n)) for n >= 1. See eq. (33), p. 536.
Sequence (1^Q_(4+n): n >= 1) appears in Table II, p. 537.
We may use the many formulae in the documentations of sequences A002212 and A007317 in order to create complicated formulae and recurrence relations for (a(n): n >= 5). We omit the details.
The first g.f. below is a combination of the g.f. for sequence A002212 by John W. Layman in 2001 and the g.f. for sequence A007317 by Ira M. Gessel and Jang Soo Kim in 2010.
The second g.f. appears in eq. (A1), p. 1180, in Cyvin et al. (1994). It is algebraically equivalent to the first g.f.
(Apparently, the word "annealated" in Cyvin et al. (1992) is spelled "annelated" in Cyvin et al. (1994).)
(End)

Crossrefs

Programs

  • Maple
    bb := proc(x) (1/4)*x^3*(4-8*x-3*sqrt((1-x)*(1-5*x))-(x+1)*sqrt((1-5*x^2)/(1-x^2))) end proc;
    taylor(bb(x), x = 0, 50); # Petros Hadjicostas, Jan 12 2019
  • Mathematica
    (1/4) x^3 (4 - 8x - 3Sqrt[(1-x)(1-5x)] - (x+1) Sqrt[(1-5x^2)/(1-x^2)]) + O[x]^29 // CoefficientList[#, x]& // Drop[#, 5]& (* Jean-François Alcover, Apr 24 2020, from Maple *)

Formula

From Petros Hadjicostas, Jan 12 2019: (Start)
For n >= 1, a(n+4) = (1/2)*(3*A002212(n) + A007317(floor((n+1)/2))).
G.f.: (x^3/4)*(4 - 8*x - 3*sqrt(1 - 6*x + 5*x^2) - (x + 1)*sqrt((1 - 5*x^2)/(1 - x^2))).
G.f.: x^3*(1 - 2*x) - (x^3/4)*(3*(1 - x)^(1/2)*(1 - 5*x)^(1/2) + (1 - x)^(-1)*(1 - x^2)^(1/2)*(1 - 5*x^2)^(1/2)) (see eq. (A1), p. 1180, in Cyvin et al. (1994)).
(End)

Extensions

Name edited by Petros Hadjicostas, Jan 12 2019
Terms a(17)-a(28) computed by Petros Hadjicostas, Jan 12 2019

A342554 Number of catafusenes with 2n hexagons and C symmetry.

Original entry on oeis.org

0, 0, 1, 5, 22, 97, 408, 1752, 7535, 32895, 144816, 644058, 2886967, 13037352, 59248959, 270799903, 1243939278, 5740014143, 26594306442, 123668622726, 577003771681, 2700346810482, 12672753684799, 59625966523555, 281207237408728, 1329130156859362
Offset: 0

Views

Author

Sean A. Irvine, Mar 27 2021

Keywords

Comments

Column C in Table 6 and Eq. (52) in Cyvin et al.

Crossrefs

Formula

a(n) = (1/4) * (A002212(n+1) - A002212(n) - A039658(n)) - (1/2) * (A055879(n) + A002212(n/2) - A055879(n/2)) where sequences are assumed 0 for non-integer arguments.

A342570 Number of catafusenes with 2n hexagons and D_{2h}(a) symmetry.

Original entry on oeis.org

0, 1, 1, 3, 4, 9, 13, 29, 46, 101, 167, 375, 644, 1461, 2563, 5899, 10534, 24469, 44237, 103643, 189302, 446381, 821905, 1948853, 3612868, 8605289, 16044151, 38362199, 71877226, 172423769, 324440379, 780496109, 1474118424, 3554991269, 6736507309, 16281079899
Offset: 0

Views

Author

Sean A. Irvine, Mar 27 2021

Keywords

Comments

Column D_{2h}(a) in Table 6 and Eq. (51) in Cyvin et al.

Crossrefs

Formula

a(n) = A055879(n) + (1/2) * (A039658(n) - A055879(n/2)) where A055879 is 0 for non-integer arguments.
Showing 1-6 of 6 results.