A346873
Triangle read by rows in which row n lists the row A000217(n) of A237591, n >= 1.
Original entry on oeis.org
1, 2, 1, 4, 1, 1, 6, 2, 1, 1, 8, 3, 2, 1, 1, 11, 4, 3, 1, 1, 1, 15, 5, 3, 2, 1, 1, 1, 19, 6, 4, 2, 2, 1, 1, 1, 23, 8, 5, 2, 2, 2, 1, 1, 1, 28, 10, 5, 3, 3, 2, 1, 1, 1, 1, 34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1, 40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1, 46, 16, 8, 5, 4, 2, 3
Offset: 1
Triangle begins:
1;
2, 1;
4, 1, 1;
6, 2, 1, 1;
8, 3, 2, 1, 1;
11, 4, 3, 1, 1, 1;
15, 5, 3, 2, 1, 1, 1;
19, 6, 4, 2, 2, 1, 1, 1;
23, 8, 5, 2, 2, 2, 1, 1, 1;
28, 10, 5, 3, 3, 2, 1, 1, 1, 1;
34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1;
40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1;
46, 16, 8, 5, 4, 2, 3, 1, 2, 1, 1, 1, 1;
...
Illustration of initial terms:
Column T gives the triangular numbers (A000217).
Column S gives A074285, the sum of the divisors of the triangular numbers which equals the area (and the number of cells) of the associated diagram.
-------------------------------------------------------------------------
n T S Diagram
-------------------------------------------------------------------------
_ _ _ _ _ _ _
1 1 1 |_| | | | | | | | | | | | |
1 _ _|_| | | | | | | | | | |
2 3 4 |_ _| _ _| | | | | | | | | |
2 1| _| | | | | | | | |
_ _ _| _| _ _| | | | | | | |
3 6 12 |_ _ _ _| 1 | _ _| | | | | | |
4 1 _ _|_| | | | | | |
| _|1 _ _ _|_| | | | |
_ _ _ _ _| | 1 _ _| | | | | |
4 10 18 |_ _ _ _ _ _|2 | _| | | | |
6 _| _| _ _ _ _|_| | |
|_ _|1 1 | | | |
| 2 _| | | |
_ _ _ _ _ _ _ _|4 | _| _ _ _ _ _| |
3 15 24 |_ _ _ _ _ _ _ _| _ _|_| | _ _ _ _ _|
8 _ _| _|1 | |
|_ _ _|1 1 _ _| |
| 3 _ _| _ _|
|4 | _|
_ _ _ _ _ _ _ _ _ _ _| _| _|
4 21 32 |_ _ _ _ _ _ _ _ _ _ _| _ _ _| _|1 1
11 | _ _ _|2
| | 3
| |
| |5
_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
5 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
15
.
A039830
Number of different coefficient values in expansion of Product_{i=1..n} (1-q^1+q^2-...+(-q)^i).
Original entry on oeis.org
1, 2, 4, 4, 6, 16, 22, 15, 19, 46, 56, 34, 40, 92, 106, 61, 69, 154, 172, 96, 106, 232, 254, 139, 151, 326, 352, 190, 204, 436, 466, 249, 265, 562, 596, 316, 334, 704, 742, 391, 411, 862, 904, 474, 496, 1036, 1082, 565, 589, 1226, 1276, 664, 690, 1432, 1486, 771
Offset: 0
A259976
Irregular triangle T(n, k) read by rows (n >= 0, 0 <= k <= A011848(n)): T(n, k) is the number of occurrences of the principal character in the restriction of xi_k to S_(n)^(2).
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 0, 1, 0, 1, 3, 4, 6, 6, 3, 1, 0, 1, 3, 5, 11, 20, 24, 32, 34, 17, 1, 0, 1, 3, 6, 13, 32, 59, 106, 181, 261, 317, 332, 245, 89, 1, 0, 1, 3, 6, 14, 38, 85, 197, 426, 866, 1615, 2743, 4125, 5495, 6318, 6054, 4416, 1637
Offset: 0
The triangle begins:
[0] 1
[1] 1
[2] 1
[3] 1,0,
[4] 1,0,1,1,
[5] 1,0,1,2,2,0,
[6] 1,0,1,3,4,6,6,3,
[7] 1,0,1,3,5,11,20,24,32,34,17
[8] 1,0,1,3,6,13,32,59,106,181,261,317,332,245,89
[9] 1,0,1,3,6,14,38,85,197,426,866,1615,2743,4125,5495,6318,6054,4416,1637
...
- Russell Merris and William Watkins, Tensors and graphs, SIAM J. Algebraic Discrete Methods 4 (1983), no. 4, 534-547.
- Andrey Zabolotskiy, a259976 (implementation in Rust).
Row n is apparently formed by the first differences of the first half of row n of
A008406.
-
from sage.groups.perm_gps.permgroup_element import make_permgroup_element
for p in range(8):
m = p*(p-1)//2
Sm = SymmetricGroup(m)
denom = factorial(p)
elements = []
for perm in SymmetricGroup(p):
t = perm.tuple()
eperm = []
for v2 in range(p):
for v1 in range(v2):
w1, w2 = sorted([t[v1], t[v2]])
eperm.append((w2-1)*(w2-2)//2+w1)
elements.append(make_permgroup_element(Sm, eperm))
for q in range(m//2+1):
char = SymmetricGroupRepresentation([m-q, q]).to_character()
numer = sum(char(e) for e in elements)
print((p, q), numer//denom)
# Andrey Zabolotskiy, Aug 28 2018
Name edited, terms T(7, 9)-T(7, 10) and rows 0-2, 8, 9 added by
Andrey Zabolotskiy, Sep 06 2018
A357745
Numbers on the 8 main spokes of a square spiral with 1 in the center.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 28, 31, 34, 37, 40, 43, 46, 49, 53, 57, 61, 65, 69, 73, 77, 81, 86, 91, 96, 101, 106, 111, 116, 121, 127, 133, 139, 145, 151, 157, 163, 169, 176, 183, 190, 197, 204, 211, 218, 225, 233, 241, 249, 257, 265, 273
Offset: 1
See visualization in links.
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
- Karl-Heinz Hofmann, Visualization of the first few terms
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
-
Rest@ CoefficientList[Series[x (1 - x^8 + x^9)/((1 - x)^3*(1 + x) (1 + x^2) (1 + x^4)), {x, 0, 63}], x] (* Michael De Vlieger, Dec 29 2022 *)
a[n_] := BitShiftRight[(n + 3)^2, 4] + Boole[BitAnd[n, 7] != 1]; Array[a, 65] (* Amiram Eldar, Dec 30 2022, after the PARI code *)
LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,11},70] (* Harvey P. Dale, Jul 13 2025 *)
-
a(n) = sqr(n+3)>>4 + (bitand(n,7)!=1); \\ Kevin Ryde, Dec 30 2022
-
def A357745(n): return ((n+3)**2 >> 4) + 1 if n % 8 != 1 else (n+3)**2 >> 4
A039825
a(n) = floor((n^2 + n + 8) / 4).
Original entry on oeis.org
2, 3, 5, 7, 9, 12, 16, 20, 24, 29, 35, 41, 47, 54, 62, 70, 78, 87, 97, 107, 117, 128, 140, 152, 164, 177, 191, 205, 219, 234, 250, 266, 282, 299, 317, 335, 353, 372, 392, 412, 432, 453, 475, 497, 519, 542, 566, 590, 614, 639
Offset: 1
A078784
Primes on axis of Ulam square spiral (with rows ... / 7 8 9 / 6 1 2 / 5 4 3 / ... ) with origin at (1).
Original entry on oeis.org
2, 11, 19, 23, 53, 61, 127, 139, 151, 163, 233, 281, 431, 541, 613, 743, 827, 977, 1009, 1279, 1621, 1871, 2003, 2281, 2377, 2731, 3109, 3221, 3511, 3571, 3631, 3691, 4001, 4129, 4523, 4591, 5077, 6361, 6521, 7789, 7877, 8419, 9851, 10151, 10973, 11503, 11719, 11827, 12377, 12601, 12713, 13399
Offset: 1
For n=0, quadrant = 1, a(1) = 2, distance = 1;
for n=1, quadrant = 1, a(2) = 11, distance = 2;
for n=2, quadrant = 3, a(3) = 19, distance = 2.
-
Select[ Sort@ Flatten@ Table[ 4n^2 + (2j - 3)n + 1, {j, 0, 3}, {n, 58}], PrimeQ] (* Robert G. Wilson v, Jul 10 2014 *)
Showing 1-6 of 6 results.
Comments