cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A346873 Triangle read by rows in which row n lists the row A000217(n) of A237591, n >= 1.

Original entry on oeis.org

1, 2, 1, 4, 1, 1, 6, 2, 1, 1, 8, 3, 2, 1, 1, 11, 4, 3, 1, 1, 1, 15, 5, 3, 2, 1, 1, 1, 19, 6, 4, 2, 2, 1, 1, 1, 23, 8, 5, 2, 2, 2, 1, 1, 1, 28, 10, 5, 3, 3, 2, 1, 1, 1, 1, 34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1, 40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1, 46, 16, 8, 5, 4, 2, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 06 2021

Keywords

Comments

The characteristic shape of the symmetric representation of sigma(A000217(n)) consists in that in the main diagonal of the diagram the smallest Dyck path has a valley and the largest Dyck path has a peak, or vice versa, the smallest Dyck path has a peak and the largest Dyck path has valley.
So knowing this characteristic shape we can know if a number is a triangular number (or not) just by looking at the diagram, even ignoring the concept of triangular number.
Therefore we can see a geometric pattern of the distribution of the triangular numbers in the stepped pyramid described in A245092.
T(n,k) is also the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(A000217(n)), from the border to the center, hence the sum of the n-th row of triangle is equal to A000217(n).
T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th triangular number into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th triangular number into exactly k + 1 consecutive parts.

Examples

			Triangle begins:
   1;
   2,  1;
   4,  1, 1;
   6,  2, 1, 1;
   8,  3, 2, 1, 1;
  11,  4, 3, 1, 1, 1;
  15,  5, 3, 2, 1, 1, 1;
  19,  6, 4, 2, 2, 1, 1, 1;
  23,  8, 5, 2, 2, 2, 1, 1, 1;
  28, 10, 5, 3, 3, 2, 1, 1, 1, 1;
  34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1;
  40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1;
  46, 16, 8, 5, 4, 2, 3, 1, 2, 1, 1, 1, 1;
...
Illustration of initial terms:
Column T gives the triangular numbers (A000217).
Column S gives A074285, the sum of the divisors of the triangular numbers which equals the area (and the number of cells) of the associated diagram.
-------------------------------------------------------------------------
  n    T    S   Diagram
-------------------------------------------------------------------------
                 _   _     _       _         _           _             _
  1    1    1   |_| | |   | |     | |       | |         | |           | |
               1 _ _|_|   | |     | |       | |         | |           | |
  2    3    4   |_ _|  _ _| |     | |       | |         | |           | |
                  2  1|    _|     | |       | |         | |           | |
                 _ _ _|  _|    _ _| |       | |         | |           | |
  3    6   12   |_ _ _ _| 1   |  _ _|       | |         | |           | |
                    4    1 _ _|_|           | |         | |           | |
                          |  _|1       _ _ _|_|         | |           | |
                 _ _ _ _ _| | 1    _ _| |               | |           | |
  4   10   18   |_ _ _ _ _ _|2    |    _|               | |           | |
                      6          _|  _|          _ _ _ _|_|           | |
                                |_ _|1 1        | |                   | |
                                | 2            _| |                   | |
                 _ _ _ _ _ _ _ _|4            |  _|          _ _ _ _ _| |
  3   15   24   |_ _ _ _ _ _ _ _|          _ _|_|           |  _ _ _ _ _|
                        8              _ _|  _|1            | |
                                      |_ _ _|1 1         _ _| |
                                      |  3           _ _|  _ _|
                                      |4            |    _|
                 _ _ _ _ _ _ _ _ _ _ _|            _|  _|
  4   21   32   |_ _ _ _ _ _ _ _ _ _ _|      _ _ _|  _|1 1
                          11                |  _ _ _|2
                                            | |  3
                                            | |
                                            | |5
                 _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  5   28   56   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
                              15
.
		

Crossrefs

Row sums give A000217, n >= 1.
Column 1 gives A039823.
For the characteristic shape of sigma(A000040(n)) see A346871.
For the characteristic shape of sigma(A000079(n)) see A346872.
For the visualization of Mersenne numbers A000225 see A346874.
For the characteristic shape of sigma(A000384(n)) see A346875.
For the characteristic shape of sigma(A000396(n)) see A346876.
For the characteristic shape of sigma(A008588(n)) see A224613.

Formula

T(n,k) = A237591(A000217(n),k). - Omar E. Pol, Feb 06 2023

Extensions

Name corrected by Omar E. Pol, Feb 06 2023

A039830 Number of different coefficient values in expansion of Product_{i=1..n} (1-q^1+q^2-...+(-q)^i).

Original entry on oeis.org

1, 2, 4, 4, 6, 16, 22, 15, 19, 46, 56, 34, 40, 92, 106, 61, 69, 154, 172, 96, 106, 232, 254, 139, 151, 326, 352, 190, 204, 436, 466, 249, 265, 562, 596, 316, 334, 704, 742, 391, 411, 862, 904, 474, 496, 1036, 1082, 565, 589, 1226, 1276, 664, 690, 1432, 1486, 771
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

a(0)=1 prepended by Seiichi Manyama, Jan 05 2023

A259976 Irregular triangle T(n, k) read by rows (n >= 0, 0 <= k <= A011848(n)): T(n, k) is the number of occurrences of the principal character in the restriction of xi_k to S_(n)^(2).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 0, 1, 0, 1, 3, 4, 6, 6, 3, 1, 0, 1, 3, 5, 11, 20, 24, 32, 34, 17, 1, 0, 1, 3, 6, 13, 32, 59, 106, 181, 261, 317, 332, 245, 89, 1, 0, 1, 3, 6, 14, 38, 85, 197, 426, 866, 1615, 2743, 4125, 5495, 6318, 6054, 4416, 1637
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2015

Keywords

Comments

See Merris and Watkins (1983) for precise definition.

Examples

			The triangle begins:
[0] 1
[1] 1
[2] 1
[3] 1,0,
[4] 1,0,1,1,
[5] 1,0,1,2,2,0,
[6] 1,0,1,3,4,6,6,3,
[7] 1,0,1,3,5,11,20,24,32,34,17
[8] 1,0,1,3,6,13,32,59,106,181,261,317,332,245,89
[9] 1,0,1,3,6,14,38,85,197,426,866,1615,2743,4125,5495,6318,6054,4416,1637
...
		

Crossrefs

Cf. A005368, A000088, A011848. Length of row n is A039823(n-1).
Row n is apparently formed by the first differences of the first half of row n of A008406.

Programs

  • Sage
    from sage.groups.perm_gps.permgroup_element import make_permgroup_element
    for p in range(8):
        m = p*(p-1)//2
        Sm = SymmetricGroup(m)
        denom = factorial(p)
        elements = []
        for perm in SymmetricGroup(p):
            t = perm.tuple()
            eperm = []
            for v2 in range(p):
                for v1 in range(v2):
                    w1, w2 = sorted([t[v1], t[v2]])
                    eperm.append((w2-1)*(w2-2)//2+w1)
            elements.append(make_permgroup_element(Sm, eperm))
        for q in range(m//2+1):
            char = SymmetricGroupRepresentation([m-q, q]).to_character()
            numer = sum(char(e) for e in elements)
            print((p, q), numer//denom)
    # Andrey Zabolotskiy, Aug 28 2018

Formula

From Andrey Zabolotskiy, Aug 28 2018: (Start)
Sum_{ k=0..A011848(n) } T(n,k) * (n*(n-1)/2 - 2*k + 1) = A000088(n).
T(n,k) = A005368(k) for n >= 2*k. (End)

Extensions

Name edited, terms T(7, 9)-T(7, 10) and rows 0-2, 8, 9 added by Andrey Zabolotskiy, Sep 06 2018

A357745 Numbers on the 8 main spokes of a square spiral with 1 in the center.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 28, 31, 34, 37, 40, 43, 46, 49, 53, 57, 61, 65, 69, 73, 77, 81, 86, 91, 96, 101, 106, 111, 116, 121, 127, 133, 139, 145, 151, 157, 163, 169, 176, 183, 190, 197, 204, 211, 218, 225, 233, 241, 249, 257, 265, 273
Offset: 1

Views

Author

Karl-Heinz Hofmann, Dec 22 2022

Keywords

Comments

The 8 main spokes are (with 1 in the center, 2 to the east, 3 to the northeast): east: A054552; northeast: A054554; north: A054556; northwest: A053755; west: A054567; southwest: A054569; south: A033951; southeast: A016754.
Alternatively the 8 main spokes are pairwise part of the 4 main axes: horizontal: A317186; vertical: A267682; diagonal: A002061; antidiagonal: A080335.
And lastly the 4 main axes are giving two main crosses: Horizontal-vertical cross: A039823; Diagonal-antidiagonal cross: A200975.

Examples

			See visualization in links.
		

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 - x^8 + x^9)/((1 - x)^3*(1 + x) (1 + x^2) (1 + x^4)), {x, 0, 63}], x] (* Michael De Vlieger, Dec 29 2022 *)
    a[n_] := BitShiftRight[(n + 3)^2, 4] + Boole[BitAnd[n, 7] != 1]; Array[a, 65] (* Amiram Eldar, Dec 30 2022, after the PARI code *)
    LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,11},70] (* Harvey P. Dale, Jul 13 2025 *)
  • PARI
    a(n) = sqr(n+3)>>4 + (bitand(n,7)!=1); \\ Kevin Ryde, Dec 30 2022
  • Python
    def A357745(n): return ((n+3)**2 >> 4) + 1 if n % 8 != 1 else (n+3)**2 >> 4
    

Formula

G.f.: x*(1-x^8+x^9)/((1-x)^3*(1+x)*(1+x^2)*(1+x^4)). - Joerg Arndt, Dec 29 2022
a(n) = floor((n+3)^2 / 16) + (1 if n != 1 mod 8). - Kevin Ryde, Dec 30 2022

A039825 a(n) = floor((n^2 + n + 8) / 4).

Original entry on oeis.org

2, 3, 5, 7, 9, 12, 16, 20, 24, 29, 35, 41, 47, 54, 62, 70, 78, 87, 97, 107, 117, 128, 140, 152, 164, 177, 191, 205, 219, 234, 250, 266, 282, 299, 317, 335, 353, 372, 392, 412, 432, 453, 475, 497, 519, 542, 566, 590, 614, 639
Offset: 1

Views

Author

Keywords

Comments

Number of different coefficient values in expansion of Product_{i=1..n} (1 + q^2 + q^4 + ... + q^(2i)).
The given terms have a second difference that is periodic with the period 1, 0, 0, 1, ... of length 4, an implicit recurrence. - John W. Layman, Jan 23 2001
Conjecturally, apart from the first term, the sequence terms are the exponents in the expansion of Sum_{n >= 1} q^(3*n) * (Product_{k >= 2*n} 1 - q^k) = q^3 - q^5 - q^7 + q^9 + q^12 - q^16 - q^20 + + - - .... Cf. A054925. - Peter Bala, Apr 13 2025

Crossrefs

Programs

  • Magma
    [Floor((n^2+n+8)/4): n in [1..50]]; // Bruno Berselli, Jul 25 2012

Formula

O.g.f.: -x*(2*x^4 - 4*x^3 + 4*x^2 - 3*x + 2)/((x-1)^3*(x^2+1)). - R. J. Mathar, Dec 05 2007
a(n) = A039823(n) + 1. - Bruno Berselli, Jul 25 2012
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5). - Wesley Ivan Hurt, May 08 2022

A078784 Primes on axis of Ulam square spiral (with rows ... / 7 8 9 / 6 1 2 / 5 4 3 / ... ) with origin at (1).

Original entry on oeis.org

2, 11, 19, 23, 53, 61, 127, 139, 151, 163, 233, 281, 431, 541, 613, 743, 827, 977, 1009, 1279, 1621, 1871, 2003, 2281, 2377, 2731, 3109, 3221, 3511, 3571, 3631, 3691, 4001, 4129, 4523, 4591, 5077, 6361, 6521, 7789, 7877, 8419, 9851, 10151, 10973, 11503, 11719, 11827, 12377, 12601, 12713, 13399
Offset: 1

Views

Author

Donald S. McDonald, Jan 10 2003

Keywords

Comments

Quadrants are numbered clockwise: 4=north, 1=east, 2=south, 3=west. The spiral numbers falling on axes (whether prime or not) are 4=north (2n+1)^2-n, 1=east (2n+1)^2+n+1, 2=south (2n)^2-(n-1), 3=west (2n)^2+n+1.
Primes to the left, right, above or below the 1 in the example in A054552.
This is the union of the primes in A168022, A168023, A168025 and A168027. - R. J. Mathar, Jul 11 2014

Examples

			For n=0, quadrant = 1, a(1) =  2, distance = 1;
for n=1, quadrant = 1, a(2) = 11, distance = 2;
for n=2, quadrant = 3, a(3) = 19, distance = 2.
		

Crossrefs

Programs

  • Mathematica
    Select[ Sort@ Flatten@ Table[ 4n^2 + (2j - 3)n + 1, {j, 0, 3}, {n, 58}], PrimeQ] (* Robert G. Wilson v, Jul 10 2014 *)

Formula

Primes in A039823(n) = ceiling((n^2 + n + 2)/4). - Georg Fischer, Dec 04 2024

Extensions

a(12) onward from Robert G. Wilson v, Jul 10 2014
Showing 1-6 of 6 results.