A039833 Smallest of three consecutive squarefree numbers k, k+1, k+2 of the form p*q where p and q are distinct primes.
33, 85, 93, 141, 201, 213, 217, 301, 393, 445, 633, 697, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285, 4413, 4533, 4593, 4881, 5601
Offset: 1
Examples
33, 34 and 35 all have 4 divisors. 85 is a term as 85 = 17*5, 86 = 43*2, 87 = 29*3.
References
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B18.
- David Wells, Curious and interesting numbers, Penguin Books, 1986, p. 114.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Reinhard Zumkeller)
- Roberto Conti, Pierluigi Contucci, and Vitalii Iudelevich, Bounds on tree distribution in number theory, arXiv:2401.03278 [math.NT], 2024. See page 13.
Crossrefs
Programs
-
Haskell
a039833 n = a039833_list !! (n-1) a039833_list = f a006881_list where f (u : vs@(v : w : xs)) | v == u+1 && w == v+1 = u : f vs | otherwise = f vs -- Reinhard Zumkeller, Aug 07 2011
-
Mathematica
lst = {}; Do[z = n^3 + 3*n^2 + 2*n; If[PrimeOmega[z/n] == PrimeOmega[z/(n + 2)] == 4 && PrimeNu[z] == 6, AppendTo[lst, n]], {n, 1, 5601, 2}]; lst (* Arkadiusz Wesolowski, Dec 11 2011 *) okQ[n_]:=Module[{cl={n,n+1,n+2}},And@@SquareFreeQ/@cl && Union[ DivisorSigma[ 0,cl]]=={4}]; Select[Range[1,6001,2],okQ] (* Harvey P. Dale, Dec 17 2011 *) SequencePosition[DivisorSigma[0,Range[6000]],{4,4,4}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 17 2017 *)
-
PARI
is(n)=n%4==1 && factor(n)[,2]==[1,1]~ && factor(n+1)[,2]==[1,1]~ && factor(n+2)[,2]==[1,1]~ \\ Charles R Greathouse IV, Aug 29 2016
-
PARI
is(n)=my(t=n%12); if(t==1, isprime((n+2)/3) && isprime((n+1)/2) && factor(n)[,2]==[1,1]~, t==9 && isprime(n/3) && isprime((n+1)/2) && factor(n+2)[,2]==[1,1]~) \\ Charles R Greathouse IV, Mar 19 2022
Formula
Extensions
Additional comments from Amarnath Murthy, Vladeta Jovovic, Labos Elemer and Benoit Cloitre, May 08 2002
Comments