cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003116 Expansion of the reciprocal of the g.f. defining A039924.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 41, 72, 127, 222, 388, 677, 1179, 2052, 3569, 6203, 10778, 18722, 32513, 56455, 98017, 170161, 295389, 512755, 890043, 1544907, 2681554, 4654417, 8078679, 14022089, 24337897, 42242732, 73319574, 127258596, 220878683
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) is the number of compositions p(1) + p(2) + ... + p(m) = n with p(i)-p(i-1) <= 1, see example; cf. A034297. - Vladeta Jovovic, Feb 09 2004
Row sums and central terms of the triangle in A168396: a(n) = A168396(2*n+1,n) and for n > 0: a(n) = Sum_{k=1..n} A168396(n,k). - Reinhard Zumkeller, Sep 13 2013
Former definition was "Expansion of reciprocal of a determinant." - N. J. A. Sloane, Aug 10 2018
From Doron Zeilberger, Aug 10 2018: (Start)
Jovovic's conjecture can be proved as follows. There is a sign-changing involution defined on pairs (L1,L2) where L1 is a partition with difference >= 2 between consecutive parts and L2 is the number of compositions described by Jovovic, with the sign (-1)^(Number of parts of L1).
Let a be the largest part of L1 and b the largest part of L2. If b-a>=2 then move b from L2 to the top of L1, otherwise move a to the top of L2.
Since this is an involution and it changes the sign (the number of parts of L1 changes parity) this proves it, since the g.f. of A039924 is exactly the signed-enumeration of the set given by L1. (End)

Examples

			From _Joerg Arndt_, Dec 29 2012: (Start)
There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)-p(k-1) <= 1:
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 2 1 1 ]
[ 5]  [ 1 1 2 2 ]
[ 6]  [ 1 2 1 1 1 ]
[ 7]  [ 1 2 1 2 ]
[ 8]  [ 1 2 2 1 ]
[ 9]  [ 1 2 3 ]
[10]  [ 2 1 1 1 1 ]
[11]  [ 2 1 1 2 ]
[12]  [ 2 1 2 1 ]
[13]  [ 2 2 1 1 ]
[14]  [ 2 2 2 ]
[15]  [ 2 3 1 ]
[16]  [ 3 1 1 1 ]
[17]  [ 3 1 2 ]
[18]  [ 3 2 1 ]
[19]  [ 3 3 ]
[20]  [ 4 1 1 ]
[21]  [ 4 2 ]
[22]  [ 5 1 ]
[23]  [ 6 ]
Replacing the condition with p(k)-p(k-1) <= 0 gives integer partitions.
(End)
		

References

  • D. H. Lehmer, Combinatorial and cyclotomic properties of certain tridiagonal matrices. Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974), pp. 53-74. Congressus Numerantium, No. X, Utilitas Math., Winnipeg, Man., 1974. MR0441852.
  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003116 n = a168396 (2 * n + 1) n  -- Reinhard Zumkeller, Sep 13 2013
  • Mathematica
    max = 35; f[x_] := 1/Sum[x^k^2*((-1)^k/Product[1 - x^i, {i, 1, k}]), {k, 0, Floor[Sqrt[max]]}]; CoefficientList[ Series[f[x], {x, 0, max}], x](* Jean-François Alcover, Jun 12 2012, after PARI *)
    b[n_, k_] := b[n, k] = Expand[If[n == 0, 1, x*
         Sum[b[n - j, j], {j, 1, Min[n, k + 1]}]]];
    a[n_] := Total@CoefficientList[b[n, n], x];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz in A168443 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(1/sum(k=0,sqrtint(n),x^k^2/prod(i=1,k,x^i-1,1+x*O(x^n))),n))
    

Formula

G.f.: 1/(Sum_{k>=0} x^(k^2)(-1)^k/(Product_{i=1..k} 1-x^i)).
a(n) ~ c * d^n, where d = 1/A347901 = 1.73566282453034742565826074971966853... and c = 0.9180565304926754125870866477349969555868577236908640010903420353... - Vaclav Kotesovec, Nov 01 2021

Extensions

Definition revised by N. J. A. Sloane, Aug 10 2018 at the suggestion of Doron Zeilberger

A224898 G.f.: Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k).

Original entry on oeis.org

1, 0, -1, -1, -1, -1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 1, 1, 0, -1, -2, -2, -4, -4, -5, -5, -6, -5, -6, -4, -4, -3, -2, 1, 1, 4, 5, 8, 9, 12, 12, 15, 15, 17, 16, 18, 15, 16, 13, 13, 8, 7, 1, 0, -7, -9, -17, -19, -27, -29, -37, -38, -46, -46, -53, -51, -57, -53, -57, -51, -53, -45, -45, -32, -31
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2013

Keywords

Comments

Conjecture: a(n+1) = A286744(n) - A286745(n). - George Beck May 13 2017

Examples

			G.f.: A(x) = 1 - x^2 - x^3 - x^4 - x^5 + x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + x^15 + x^16 - x^18 +...
where
A(x) = 1 - x^2/(1-x) + x^6/((1-x)*(1-x^2)) - x^12/((1-x)*(1-x^2)*(1-x^3)) + x^20/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) - x^30/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) +...
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(sum(m=0, sqrtint(n), (-1)^m*x^(m*(m+1))/prod(k=1, m, 1-x^k,1+x*O(x^n))),n)
    for(n=0, 80, print1(a(n), ", "))

A286041 Number of partitions of n with parts differing by at least two and with an even number of parts.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 11, 14, 15, 19, 21, 26, 29, 35, 39, 47, 52, 61, 68, 79, 87, 100, 110, 126, 138, 156, 171, 193, 211, 237, 259, 290, 317, 354, 387, 432, 472, 525, 575, 639, 699, 776, 849, 941, 1030, 1139, 1246, 1377, 1505, 1659, 1813, 1996, 2178, 2394, 2610, 2863, 3119, 3415, 3716, 4064, 4416, 4820, 5234, 5705, 6187, 6735, 7297, 7932
Offset: 0

Views

Author

George Beck, May 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length@ Select[IntegerPartitions@n, Min[-Differences@#] > 1  && EvenQ@Length@# &], {n, 80}]

Formula

a(n) = A003114(n) - A286316(n).
a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (4 * 3^(1/4) * 5^(1/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 05 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, May 07 2017

A286316 Number of partitions of n with parts differing by at least two and with an odd number of parts.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 20, 22, 25, 28, 32, 35, 40, 44, 50, 56, 63, 70, 80, 89, 101, 113, 128, 143, 162, 181, 204, 228, 256, 285, 320, 355, 396, 439, 489, 540, 599, 660, 730, 803, 886, 972, 1070, 1172, 1287, 1408, 1544, 1686, 1846, 2014, 2202, 2400, 2621, 2854, 3114, 3389, 3693, 4016, 4374, 4753, 5172, 5617, 6107, 6628, 7201, 7810
Offset: 0

Views

Author

George Beck, May 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length@
      Select[IntegerPartitions@n, Min[-Differences@#] > 1 && OddQ@Length@# &], {n, 80}]

Formula

a(n) = A003114(n) - A286041(n).
a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (4 * 3^(1/4) * 5^(1/2) * n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 05 2020

Extensions

a(0)=0 prepended by Alois P. Heinz, May 07 2017

A350310 Alternating row sums of A066448.

Original entry on oeis.org

1, -1, -2, -2, -1, 0, 2, 4, 6, 7, 8, 8, 6, 4, 0, -6, -11, -18, -26, -32, -38, -44, -46, -46, -44, -37, -26, -12, 8, 32, 58, 90, 124, 158, 194, 228, 259, 286, 306, 316, 316, 304, 276, 232, 170, 88, -12, -132, -272, -431, -606, -794, -994, -1200, -1408, -1614, -1808, -1984, -2138, -2258, -2336
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=0, sqrtint(N), (-1)^k*x^k^2*prod(j=1, k, (1+x^j)/(1-x^j))))

Formula

a(n) = Sum_{k=0..n} (-1)^k * A066448(n,k).
G.f.: Sum_{k>=0} (-1)^k * x^(k^2) * Product_{j=1..k} (1+x^j)/(1-x^j).

A350738 Expansion of Sum_{k>=0} (-1)^k * x^(k^2) * Product_{j=1..k} (1+x^j).

Original entry on oeis.org

1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, -1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 0, 0, -1, -2, -2, -3, -3, -3, -3, -3, -3, -1, -1, 0, 1, 1, 3, 4, 4, 4, 5, 5, 5, 5, 3, 3, 3, 1, 0, -1, -3, -4, -4, -6, -7, -7, -8, -8, -8, -7, -7, -6, -5, -4, -2, -1, 1, 3, 5, 6, 8, 9, 10, 12, 13, 13, 12, 13, 12, 11, 11, 9, 7, 5, 3, 0
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=0, sqrtint(N), (-1)^k*x^k^2*prod(j=1, k, 1+x^j)))
    
  • Python
    from math import prod, isqrt
    from sympy import Poly
    from sympy.abc import x
    def A350738(n): return Poly(sum((-1 if k % 2 else 1)*x**(k**2)*prod(1+x**j for j in range(1,k+1)) for k in range(isqrt(n+1)+1))).all_coeffs()[-n-1] # Chai Wah Wu, Jan 14 2022

A350737 Expansion of Sum_{k>=0} (-1)^k * x^(k*(3*k+1)/2) / Product_{j=1..k} (1-x^j).

Original entry on oeis.org

1, 0, -1, -1, -1, -1, -1, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 2, 1, 0, -1, -2, -4, -5, -6, -8, -9, -10, -11, -12, -12, -13, -12, -12, -11, -10, -7, -6, -3, 0, 4, 7, 12, 15, 21, 25, 30, 34, 40, 43, 48, 51, 55, 56, 59, 59, 60, 58, 56, 52, 49, 42, 35, 26, 17, 5, -7, -21, -36, -52, -69, -87, -105, -124, -144, -163
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=0, N, (-1)^k*x^(k*(3*k+1)/2)/prod(j=1, k, 1-x^j)))

A227620 Logarithmic derivative of A005169, the number of fountains of n coins.

Original entry on oeis.org

1, 1, 4, 5, 11, 22, 36, 69, 121, 221, 386, 686, 1210, 2122, 3734, 6517, 11408, 19903, 34714, 60485, 105312, 183272, 318758, 554262, 963361, 1674076, 2908426, 5052066, 8774386, 15237482, 26458718, 45939797, 79759442, 138468656, 240382216, 417289619, 724369536, 1257396992
Offset: 1

Views

Author

Paul D. Hanna, Jul 17 2013

Keywords

Examples

			L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 5*x^4/4 + 11*x^5/5 + 22*x^6/6 +...
such L(x) = log(P(x)) - log(Q(x)) where
P(x) = 1 - x^2 - x^3 - x^4 - x^5 + x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + x^15 + x^16 - x^18 +...+ A224898(n)*x^n +...
Q(x) = 1 - x - x^2 - x^3 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + x^11 + x^12 - 2*x^15 - x^16 - 3*x^17 - 3*x^18 +...+ A039924(n)*x^n +...
log(P(x)) = -2*x^2/2 - 3*x^3/3 - 6*x^4/4 - 10*x^5/5 - 11*x^6/6 - 21*x^7/7 - 22*x^8/8 - 39*x^9/9 - 42*x^10/10 +...
log(Q(x)) = -x - 3*x^2/2 - 7*x^3/3 - 11*x^4/4 - 21*x^5/5 - 33*x^6/6 - 57*x^7/7 - 91*x^8/8 - 160*x^9/9 - 263*x^10/10 +...
		

Crossrefs

Programs

  • PARI
    /* As the log of a continued fraction: */
    {a(n)=local(A=x, CF=1+x); for(k=0, n, CF=1/(1-x^(n-k+1)*CF+x*O(x^n)); A=log(CF)); n*polcoeff(A, n)}
    for(n=1,40,print1(a(n),", "))
    
  • PARI
    /* By the Rogers-Ramanujan continued fraction identity: */
    {a(n)=local(A=x, P=1+x, Q=1);
    P=sum(m=0, sqrtint(n), (-1)^m*x^(m*(m+1))/prod(k=1, m, 1-x^k));
    Q=sum(m=0, sqrtint(n), (-1)^m*x^(m^2)/prod(k=1, m, 1-x^k));
    A=log(P/(Q+x*O(x^n))); n*polcoeff(A, n)}
    for(n=1,40,print1(a(n),", "))

Formula

L.g.f.: log( 1/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-x^5/(1-...)))))) ), the logarithm of a continued fraction.
L.g.f.: log( P(x) / Q(x) ) where
P(x) = Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} (-1)^n* x^(n^2) / Product_{k=1..n} (1-x^k),
due to the Rogers-Ramanujan continued fraction identity.
Showing 1-8 of 8 results.