A040052 Continued fraction for sqrt(60).
7, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14
Offset: 0
Examples
7.74596669241483377035853079... = 7 + 1/(1 + 1/(2 + 1/(1 + 1/(14 + ...)))). - _Harry J. Smith_, Jun 07 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Programs
-
Magma
[7] cat &cat[ [1, 2, 1, 14]: n in [1..18]]; // Bruno Berselli, Mar 07 2011
-
Maple
Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
-
Mathematica
ContinuedFraction[Sqrt[60],300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *) PadRight[{7},120,{14,1,2,1}] (* Harvey P. Dale, Aug 07 2019 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 19000); x=contfrac(sqrt(60)); for (n=0, 20000, write("b040052.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 07 2009
Formula
From Bruno Berselli, Mar 07 2011: (Start)
G.f.: (7 + x + 2*x^2 + x^3 + 7*x^4)/(1-x^4).
a(n) = (6*(-i)^n + 6*i^n + 7*(-1)^n + 9)/2 - 7*A000007(n), where i is the imaginary unit. (End)
From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2) = 2, a(2^e) = 14 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s + 3/4^(s-1)). (End)