cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040052 Continued fraction for sqrt(60).

Original entry on oeis.org

7, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14, 1, 2, 1, 14
Offset: 0

Views

Author

Keywords

Examples

			7.74596669241483377035853079... = 7 + 1/(1 + 1/(2 + 1/(1 + 1/(14 + ...)))). - _Harry J. Smith_, Jun 07 2009
		

Crossrefs

Cf. A000007, A010513 (decimal expansion), A248285 (Egyptian fractions).

Programs

  • Magma
    [7] cat &cat[ [1, 2, 1, 14]: n in [1..18]]; // Bruno Berselli, Mar 07 2011
  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[60],300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *)
    PadRight[{7},120,{14,1,2,1}] (* Harvey P. Dale, Aug 07 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 19000); x=contfrac(sqrt(60)); for (n=0, 20000, write("b040052.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 07 2009
    

Formula

From Bruno Berselli, Mar 07 2011: (Start)
G.f.: (7 + x + 2*x^2 + x^3 + 7*x^4)/(1-x^4).
a(n) = (6*(-i)^n + 6*i^n + 7*(-1)^n + 9)/2 - 7*A000007(n), where i is the imaginary unit. (End)
From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2) = 2, a(2^e) = 14 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s + 3/4^(s-1)). (End)