cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A086018 Number of cyclic numbers (A001913) <= 10^n.

Original entry on oeis.org

0, 1, 9, 60, 467, 3617, 29500, 248881, 2155288, 19016617, 170169241, 1539964486, 14063663530, 129413160100
Offset: 0

Views

Author

Eric W. Weisstein, Jul 07 2003

Keywords

Comments

Note that there are several different definitions of cyclic number: this sequence refers to A001913.

Examples

			a(1)=1 since 7 is the only cyclic number <= 10^1.
a(2)=9 since the following are the cyclic numbers <= 10^2: 7, 17, 19, 23, 29, 47, 59, 61, 97.
		

Crossrefs

Programs

  • Mathematica
    DigitCycleLength[ r_Rational, b_Integer?Positive ] := MultiplicativeOrder[ b, FixedPoint[ Quotient[ #, GCD[ #, b ] ] &, Denominator[ r ] ] ]; a = 0; Do[ If[ Prime[ n ] - DigitCycleLength[ 1/Prime[ n ], 10 ] == 1, a++ ], {n, 2, PrimePi[ 10^7 ]} ] Print[ a ]

Formula

Conjectured ratio a(n)/A006880(n) as n->infinity is Artin's constant 0.3739558136...

Extensions

a(11)-a(13) from Hiroaki Yamanouchi, Oct 10 2015

A041804 Numerators of continued fraction convergents to sqrt(423).

Original entry on oeis.org

20, 21, 41, 144, 617, 1995, 2612, 4607, 186892, 191499, 378391, 1326672, 5685079, 18381909, 24066988, 42448897, 1722022868, 1764471765, 3486494633, 12223955664, 52382317289, 169370907531, 221753224820, 391124132351, 15866718518860, 16257842651211
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[423], 30]] (* Harvey P. Dale, Oct 09 2013 *)

Formula

G.f.: -(x^15 -20*x^14 +21*x^13 -41*x^12 +144*x^11 -617*x^10 +1995*x^9 -2612*x^8 -4607*x^7 -2612*x^6 -1995*x^5 -617*x^4 -144*x^3 -41*x^2 -21*x -20) / ((x^8 -96*x^4 +1)*(x^8 +96*x^4 +1)). - Colin Barker, Nov 25 2013

Extensions

More terms from Colin Barker, Nov 25 2013

A041805 Denominators of continued fraction convergents to sqrt(423).

Original entry on oeis.org

1, 1, 2, 7, 30, 97, 127, 224, 9087, 9311, 18398, 64505, 276418, 893759, 1170177, 2063936, 83727617, 85791553, 169519170, 594349063, 2546915422, 8235095329, 10782010751, 19017106080, 771466253951, 790483360031, 1561949613982, 5476332201977, 23467278421890
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,2,7,30,97,127,224,9087,9311,18398,64505, 276418,893759,1170177,2063936]; [n le 16 select I[n] else 9214*Self(n-8)-Self(n-16): n in [1..50]]; // Vincenzo Librandi, Dec 24 2013
  • Mathematica
    Denominator[Convergents[Sqrt[423], 30]] (* Vincenzo Librandi, Dec 24 2013 *)

Formula

G.f.: -(x^14 -x^13 +2*x^12 -7*x^11 +30*x^10 -97*x^9 +127*x^8 -224*x^7 -127*x^6 -97*x^5 -30*x^4 -7*x^3 -2*x^2 -x -1) / ((x^8 -96*x^4 +1)*(x^8 +96*x^4 +1)). - Colin Barker, Nov 25 2013
a(n) = 9214*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Dec 24 2013

Extensions

More terms from Colin Barker, Nov 25 2013
Showing 1-3 of 3 results.