A041011 Denominators of continued fraction convergents to sqrt(8).
1, 1, 5, 6, 29, 35, 169, 204, 985, 1189, 5741, 6930, 33461, 40391, 195025, 235416, 1136689, 1372105, 6625109, 7997214, 38613965, 46611179, 225058681, 271669860, 1311738121, 1583407981, 7645370045, 9228778026, 44560482149
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..199 [shifted by _Georg Fischer_, Jul 01 2019]
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6.
- Hongshen Chua, A Study of Second-Order Linear Recurrence Sequences via Continuants, J. Int. Seq. (2023) Vol. 26, Art. 23.8.8.
- J. L. Ramirez and F. Sirvent, A q-Analogue of the Bi-Periodic Fibonacci Sequence, J. Int. Seq. 19 (2016) # 16.4.6, t_n at a=1, b=4.
- Eric Weisstein's World of Mathematics, Lehmer Number
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Programs
-
Magma
I:=[1, 1, 5, 6]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
-
Maple
with(combinat): a := n -> fibonacci(n + 1, 2)/2^(n mod 2): seq(a(n), n = 0 .. 28); # Miles Wilson, Aug 04 2024
-
Mathematica
Denominator[NestList[(4/(4 + #))&, 0, 60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *) CoefficientList[Series[(x + x^2 - x^3)/(1 - 6 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *) a0[n_] := ((3-2*Sqrt[2])^n*(2+Sqrt[2])-(-2+Sqrt[2])*(3+2*Sqrt[2])^n)/4 // Simplify a1[n_] := (-(3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/(4*Sqrt[2]) // Simplify Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *) LinearRecurrence[{0,6,0,-1},{1,1,5,6},40] (* Harvey P. Dale, Oct 21 2024 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^n*[1;1;5;6])[1,1] \\ Charles R Greathouse IV, Nov 13 2015
-
PARI
my(x='x+O('x^99)); concat(0, Vec((1+x-x^2)/(1-6*x^2+x^4))) \\ Altug Alkan, Mar 27 2016
Formula
a(n) = 6*a(n-2) - a(n-4). Also:
a(2n) = a(2n-1)+a(2n-2), a(2n+1)=4*a(2n)+a(2n-1).
G.f.: (1+x-x^2)/(1-6*x^2+x^4).
From Peter Bala, May 12 2014: (Start)
For n even, a(n) = (alpha^n - beta^n)/(alpha - beta), and for n odd, a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2), where alpha = 1 + sqrt(2) and beta = 1 - sqrt(2).
a(n) = Product_{k = 1..floor((n-1)/2)} ( 4 + 4*cos^2(k*Pi/n) ) for n >= 1. (End)
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((3-2*sqrt(2))^n*(2+sqrt(2))-(-2+sqrt(2))*(3+2*sqrt(2))^n)/4.
a1(n) = (-(3-2*sqrt(2))^n+(3+2*sqrt(2))^n)/(4*sqrt(2)). (End)
a(n) = ((-(-1 - sqrt(2))^n - 3*(1-sqrt(2))^n + (-1+sqrt(2))^n + 3*(1+sqrt(2))^n))/(8*sqrt(2)). - Colin Barker, Mar 27 2016
Extensions
Entry improved by Michael Somos
First term 0 in b-file, formulas and programs removed by Georg Fischer, Jul 01 2019
Comments