cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041011 Denominators of continued fraction convergents to sqrt(8).

Original entry on oeis.org

1, 1, 5, 6, 29, 35, 169, 204, 985, 1189, 5741, 6930, 33461, 40391, 195025, 235416, 1136689, 1372105, 6625109, 7997214, 38613965, 46611179, 225058681, 271669860, 1311738121, 1583407981, 7645370045, 9228778026, 44560482149
Offset: 0

Views

Author

Keywords

Comments

Sqrt(8) = 2 + continued fraction [0; 1, 4, 1, 4, 1, 4, ...] = 4/2 + 4/5 + 4/(5*29) + 4/(29*169) + 4/(169*985) + ... - Gary W. Adamson, Dec 21 2007
This is the sequence of Lehmer numbers U_n(sqrt(R),Q) with the parameters R = 4 and Q = -1. It is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. - Peter Bala, May 12 2014
Apparently the same as A152118(n). - Georg Fischer, Jul 01 2019

Crossrefs

Programs

  • Magma
    I:=[1, 1, 5, 6]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
    
  • Maple
    with(combinat): a := n -> fibonacci(n + 1, 2)/2^(n mod 2):
    seq(a(n), n = 0 .. 28); # Miles Wilson, Aug 04 2024
  • Mathematica
    Denominator[NestList[(4/(4 + #))&, 0, 60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    CoefficientList[Series[(x + x^2 - x^3)/(1 - 6 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    a0[n_] := ((3-2*Sqrt[2])^n*(2+Sqrt[2])-(-2+Sqrt[2])*(3+2*Sqrt[2])^n)/4 // Simplify
    a1[n_] := (-(3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/(4*Sqrt[2]) // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
    LinearRecurrence[{0,6,0,-1},{1,1,5,6},40] (* Harvey P. Dale, Oct 21 2024 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^n*[1;1;5;6])[1,1] \\ Charles R Greathouse IV, Nov 13 2015
    
  • PARI
    my(x='x+O('x^99)); concat(0, Vec((1+x-x^2)/(1-6*x^2+x^4))) \\ Altug Alkan, Mar 27 2016

Formula

a(2n) = A000129(2n+1), a(2n+1) = A000129(2n+2)/2.
a(n) = 6*a(n-2) - a(n-4). Also:
a(2n) = a(2n-1)+a(2n-2), a(2n+1)=4*a(2n)+a(2n-1).
G.f.: (1+x-x^2)/(1-6*x^2+x^4).
From Peter Bala, May 12 2014: (Start)
For n even, a(n) = (alpha^n - beta^n)/(alpha - beta), and for n odd, a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2), where alpha = 1 + sqrt(2) and beta = 1 - sqrt(2).
a(n) = Product_{k = 1..floor((n-1)/2)} ( 4 + 4*cos^2(k*Pi/n) ) for n >= 1. (End)
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((3-2*sqrt(2))^n*(2+sqrt(2))-(-2+sqrt(2))*(3+2*sqrt(2))^n)/4.
a1(n) = (-(3-2*sqrt(2))^n+(3+2*sqrt(2))^n)/(4*sqrt(2)). (End)
a(n) = ((-(-1 - sqrt(2))^n - 3*(1-sqrt(2))^n + (-1+sqrt(2))^n + 3*(1+sqrt(2))^n))/(8*sqrt(2)). - Colin Barker, Mar 27 2016

Extensions

Entry improved by Michael Somos
First term 0 in b-file, formulas and programs removed by Georg Fischer, Jul 01 2019