A041016 Numerators of continued fraction convergents to sqrt(12).
3, 7, 45, 97, 627, 1351, 8733, 18817, 121635, 262087, 1694157, 3650401, 23596563, 50843527, 328657725, 708158977, 4577611587, 9863382151, 63757904493, 137379191137, 888033051315, 1913445293767, 12368704813917
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1).
Programs
-
Mathematica
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[12],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*) Numerator[Convergents[Sqrt[12], 30]] (* Vincenzo Librandi, Oct 28 2013 *) a0[n_] := (-((7-4*Sqrt[3])^n*(3+2*Sqrt[3]))+(-3+2*Sqrt[3])*(7+4*Sqrt[3])^n)/2 //Simplify a1[n_] := ((7-4*Sqrt[3])^n+(7+4*Sqrt[3])^n)/2 // Simplify Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *) LinearRecurrence[{0,14,0,-1},{3,7,45,97},30] (* Harvey P. Dale, Jun 02 2016 *)
Formula
G.f.: (3+7*x+3*x^2-x^3)/(1-14*x^2+x^4).
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-((7-4*sqrt(3))^n*(3+2*sqrt(3)))+(-3+2*sqrt(3))*(7+4*sqrt(3))^n)/2.
a1(n) = ((7-4*sqrt(3))^n+(7+4*sqrt(3))^n)/2. (End)