cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A010469 Decimal expansion of square root of 12.

Original entry on oeis.org

3, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5
Offset: 1

Views

Author

Keywords

Comments

3+sqrt(12) is the ratio of the radii of the three identical kissing circles to that of their inner Soddy circle. - Lekraj Beedassy, Mar 04 2006
sqrt(12)-3 = 2*sqrt(3)-3 is the area of the largest equilateral triangle that can be inscribed in a unit square (as stated in MathWorld/Weisstein link). - Rick L. Shepherd, Jun 24 2006
Continued fraction expansion is 3 followed by {2, 6} repeated (A040008). - Harry J. Smith, Jun 02 2009
Surface of a regular octahedron with unit edge, and twice the surface of a regular tetrahedron with unit edge. - Stanislav Sykora, Nov 21 2013
Imaginary part of the square of a complex cubic root of 64 (real part is -2). - Alonso del Arte, Jan 13 2014

Examples

			3.4641016151377545870548926830...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.31.4 and 2.31.5, pp. 201-202.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A120683.
Cf. A040008 (continued fraction), A041016 (numerators of convergents), A041017 (denominators).
Cf. A002194 (surface of tetrahedron), A010527 (surface of icosahedron/10), A131595 (surface of dodecahedron).

Programs

  • Maple
    evalf[100](sqrt(12)); # Muniru A Asiru, Feb 12 2019
  • Mathematica
    RealDigits[N[Sqrt[12], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(12); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010469.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009

Formula

Equals 2*sqrt(3) = 2*A002194. - Rick L. Shepherd, Jun 24 2006

A041008 Numerators of continued fraction convergents to sqrt(7).

Original entry on oeis.org

2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010465, A041009 (denominators), A266698 (quadrisection), A001081 (quadrisection).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041010 (m=8), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
    LinearRecurrence[{0,0,0,16,0,0,0,-1},{2,3,5,8,37,45,82,127},40] (* Harvey P. Dale, Jul 23 2021 *)
  • PARI
    A041008=contfracpnqn(c=contfrac(sqrt(7)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use:
    A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]}
    extend(A,c,N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[,1]]*c[,2]); A} \\ (End)

Formula

G.f.: (2 + 3*x + 5*x^2 + 8*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7)/(1 - 16*x^4 + x^8).

A180028 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 3*x)/(1 - 6*x - 3*x^2).

Original entry on oeis.org

1, 9, 57, 369, 2385, 15417, 99657, 644193, 4164129, 26917353, 173996505, 1124731089, 7270376049, 46996449561, 303789825513, 1963728301761, 12693739287105, 82053620627913, 530402941628793, 3428578511656497
Offset: 0

Views

Author

Johannes W. Meijer, Aug 09 2010; edited Jun 21 2013

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the center square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen.
On a 3 X 3 chessboard there are 2^9 = 512 ways to explode with fury on the center square (off the center square the piece behaves like a normal queen). The red queen is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program and A180140. For the center square the 512 red queens lead to 17 red queen sequences, see the overview of red queen sequences and the crossreferences.
The sequence above corresponds to just one red queen vector, i.e., A[5] = [111 111 111] vector. The other squares lead for this vector to A090018.
This sequence belongs to a family of sequences with g.f. (1+k*x)/(1 - 6*x - k*x^2). The members of this family that are red queen sequences are A180028 (k=3; this sequence), A180029 (k=2), A015451 (k=1), A000400 (k=0), A001653 (k=-1), A180034 (k=-2), A084120 (k=-3), A154626 (k=-4) and A000012 (k=-5). Other members of this family are A123362 (k=5), 6*A030192(k=-6).
Inverse binomial transform of A107903.

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.

Crossrefs

Cf. A180140 (berserker sequences)
Cf. A180032 (Corner and side squares).
Cf. Red queen sequences center square [decimal value A[5]]: A180028 [511], A180029 [255], A180031 [495], A015451 [127], A152240 [239], A000400 [63], A057088 [47], A001653 [31], A122690 [15], A180034 [23], A180036 [7], A084120 [19], A180038 [3], A154626 [17], A015449 [1], A000012 [16], A000007 [0].

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else 6*Self(n-1)+3*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 15 2011
  • Maple
    nmax:=19; m:=5; A[1]:=[0,1,1,1,1,0,1,0,1]: A[2]:=[1,0,1,1,1,1,0,1,0]: A[3]:=[1,1,0,0,1,1,1,0,1]: A[4]:=[1,1,0,0,1,1,1,1,0]: A[5]:=[1,1,1,1,1,1,1,1,1]: A[6]:=[0,1,1,1,1,0,0,1,1]: A[7]:=[1,0,1,1,1,0,0,1,1]: A[8]:=[0,1,0,1,1,1,1,0,1]: A[9]:=[1,0,1,0,1,1,1,1,0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{6,3},{1,9},50] (* Vincenzo Librandi, Nov 15 2011 *)

Formula

G.f.: (1+3*x)/(1 - 6*x - 3*x^2).
a(n) = 6*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 9.
a(n) = ((1-A)*A^(-n-1) + (1-B)*B^(-n-1))/4 with A=(-1+2*sqrt(3)/3) and B=(-1-2*sqrt(3)/3).
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)*A108411(n+1)/(A041017(n-1)*sqrt(12) - A041016(n-1)) for n >= 1.

A041014 Numerators of continued fraction convergents to sqrt(11).

Original entry on oeis.org

3, 10, 63, 199, 1257, 3970, 25077, 79201, 500283, 1580050, 9980583, 31521799, 199111377, 628855930, 3972246957, 12545596801, 79245827763, 250283080090, 1580944308303, 4993116004999, 31539640338297
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010468, A041015 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041016 (m=12), ..., A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[11], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
  • PARI
    A041014=contfracpnqn(c=contfrac(sqrt(11)), #c)[1,][^-1] \\ Discard last element which may be incorrect. Use e.g. \p999 to get more terms, or extend as follows:
    {A041014_upto(N,A=Vec(A041014,N))=for(n=#A041014+1,N, A[n]=20*A[n-2]-A[n-4]); A041014=A} \\ M. F. Hasler, Nov 01 2019

Formula

G.f.: (3 + 10*x + 3*x^2 - x^3)/(1 - 20*x^2 + x^4).

A041017 Denominators of continued fraction convergents to sqrt(12).

Original entry on oeis.org

1, 2, 13, 28, 181, 390, 2521, 5432, 35113, 75658, 489061, 1053780, 6811741, 14677262, 94875313, 204427888, 1321442641, 2847313170, 18405321661, 39657956492, 256353060613, 552364077718, 3570537526921
Offset: 0

Views

Author

Keywords

Comments

a(2n+1)/a(2n) tends to 1/(sqrt(12) - 3) = 2.154700538...; e.g., a(7)/a(6) = 5432/2521 = 2.1547005...; but a(2n)/a(2n - 1) tends to 6.464101615... = sqrt(12) + 3; e.g., a(8)/a(7) = 35113/5432 = 6.46101620... - Gary W. Adamson, Mar 28 2004
The constant sqrt(12) + 3 = 6.464101615... is the "curvature" (reciprocal of the radius) of the inner or 4th circle in the Descartes circle equation; given 3 mutually tangent circles of radius 1, the radius of the innermost tangential circle = 0.1547005383... = 1/(sqrt(12) + 3). The Descartes circle equation states that given 4 mutually tangent circles (i.e., 3 tangential plus the innermost circle) with curvatures a,b,c,d (curvature = 1/r), then (a^2 + b^2 + c^2 + d^2) = 1/2(a + b + c + d)^2. - Gary W. Adamson, Mar 28 2004
Sequence also gives numerators in convergents to barover[6,2] = CF: [6,2,6,2,6,2,...] = 0.1547005... = 1/(sqrt(12) + 3), the first few convergents being 1/6, 2/13, 13/84, 28/181, 181/1170, 390/2521... with 390/2521 = 0.154700515... - Gary W. Adamson, Mar 28 2004
Sqrt(12) = 3 + continued fraction [2, 6, 2, 6, 2, 6, ...] = 6/2 + 6/13 + 6/(13*181) + 6/(181*2521) + ... - Gary W. Adamson, Dec 21 2007
Also, values i where A227790(i)/i reaches a new maximum (conjectured). - Ralf Stephan, Sep 23 2013

Crossrefs

Cf. A010469, A040008, A041016 (numerators).

Programs

  • Maple
    with (numtheory): seq( nthdenom(cfrac(sin(Pi/6)*tan(Pi/3),25),i)-nthnumer(cfrac(sin(Pi/6)*tan(Pi/3),25),i), i=2..24 ); # Zerinvary Lajos, Feb 10 2007
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[12],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Denominator[Convergents[Sqrt[12],50]] (* Harvey P. Dale, Feb 18 2012 *)
    a0[n_] := ((7-4*Sqrt[3])^n*(2+Sqrt[3])-(-2+Sqrt[3])*(7+4*Sqrt[3])^n)/4 // Simplify
    a1[n_] := 2*Sum[a0[i], {i, 1, n}]
    Flatten[MapIndexed[{a0[#],a1[#]}&,Range[11]]] (* Gerry Martens, Jul 10 2015 *)

Formula

G.f.: (1+2*x-x^2)/(1-14*x^2+x^4). - Colin Barker, Jan 01 2012
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((7-4*sqrt(3))^n*(2+sqrt(3)) - (-2+sqrt(3))*(7+4*sqrt(3))^n)/4.
a1(n) = 2*Sum_{i=1..n} a0(i). (End)

A041010 Numerators of continued fraction convergents to sqrt(8).

Original entry on oeis.org

2, 3, 14, 17, 82, 99, 478, 577, 2786, 3363, 16238, 19601, 94642, 114243, 551614, 665857, 3215042, 3880899, 18738638, 22619537, 109216786, 131836323, 636562078, 768398401, 3710155682, 4478554083, 21624372014, 26102926097, 126036076402, 152139002499
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A040005 (continued fraction), A041011 (denominators), A010466 (decimals).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[8],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
    CoefficientList[Series[(2 + 3*x + 2*x^2 - x^3)/(1 - 6*x^2 + x^4), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 28 2013 *)
    a0[n_] := -((3-2*Sqrt[2])^n*(1+Sqrt[2]))+(-1+Sqrt[2])*(3+2*Sqrt[2])^n // Simplify
    a1[n_] := ((3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/2 // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
  • PARI
    A041010=contfracpnqn(c=contfrac(sqrt(8)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041010[n+1]! For more terms use:
    A041010(n)={n<#A041010|| A041010=extend(A041010, [-1,0,6,0]~, n\.8); A041010[n+1]}
    extend(A,c,N)={for(n=#A+1,#A=Vec(A,N), A[n]=A[n-#c..n-1]*c);A} \\ (End)

Formula

a(n) = 6*a(n-2) - a(n-4).
a(2n) = a(2n-1) + a(2n-2), a(2n+1) = 4*a(2n) + a(2n-1).
a(2n) = A001333(2n), a(2n+1) = 2*A001333(2n+1).
G.f.: (2+3*x+2*x^2-x^3)/(1-6*x^2+x^4).
a(n) = A001333(n+1)*A000034(n+1). - R. J. Mathar, Jul 08 2009
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = -((3-2*sqrt(2))^n*(1+sqrt(2))) + (-1+sqrt(2))*(3+2*sqrt(2))^n.
a1(n) = ((3-2*sqrt(2))^n + (3+2*sqrt(2))^n)/2. (End)

Extensions

Entry improved by Michael Somos
Initial term 1 removed and b-file, program and formulas adapted by Georg Fischer, Jul 01 2019
Cross-references added by M. F. Hasler, Nov 02 2019
Showing 1-6 of 6 results.