cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A010471 Decimal expansion of square root of 14.

Original entry on oeis.org

3, 7, 4, 1, 6, 5, 7, 3, 8, 6, 7, 7, 3, 9, 4, 1, 3, 8, 5, 5, 8, 3, 7, 4, 8, 7, 3, 2, 3, 1, 6, 5, 4, 9, 3, 0, 1, 7, 5, 6, 0, 1, 9, 8, 0, 7, 7, 7, 8, 7, 2, 6, 9, 4, 6, 3, 0, 3, 7, 4, 5, 4, 6, 7, 3, 2, 0, 0, 3, 5, 1, 5, 6, 3, 0, 6, 9, 3, 9, 0, 2, 7, 9, 7, 6, 8, 0, 9, 8, 9, 5, 1, 9, 4, 3, 7, 9, 5, 7
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 3 followed by {1, 2, 1, 6} repeated. - Harry J. Smith, Jun 02 2009
The convergents are given in A041020/A041021. - Wolfdieter Lang, Nov 27 2017

Examples

			3.741657386773941385583748732316549301756019807778726946303745467320035...
		

Crossrefs

Cf. A010123 (continued fraction), A041020/A041021.

Programs

  • Maple
    evalf[100](sqrt(14)); # Muniru A Asiru, Feb 12 2019
  • Mathematica
    RealDigits[N[Sqrt[14], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
    RealDigits[Sqrt[14],10,120][[1]] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    default(realprecision, 20080); x=sqrt(14); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010471.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009

A041020 Numerators of continued fraction convergents to sqrt(14).

Original entry on oeis.org

3, 4, 11, 15, 101, 116, 333, 449, 3027, 3476, 9979, 13455, 90709, 104164, 299037, 403201, 2718243, 3121444, 8961131, 12082575, 81456581, 93539156, 268534893, 362074049, 2440979187, 2803053236, 8047085659
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (3+4*x+11*x^2+15*x^3+11*x^4-4*x^5+3*x^6-x^7)/(1-30*x^4+x^8). - Colin Barker, Jan 03 2012
a(n) = 30*a(n-4) - a(n-8). - Wesley Ivan Hurt, Aug 04 2025
Showing 1-2 of 2 results.