A041035 Denominators of continued fraction convergents to sqrt(22).
1, 1, 3, 13, 29, 42, 365, 407, 1179, 5123, 11425, 16548, 143809, 160357, 464523, 2018449, 4501421, 6519870, 56660381, 63180251, 183020883, 795263783, 1773548449, 2568812232, 22324046305, 24892858537
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,394,0,0,0,0,0,-1).
Programs
-
Mathematica
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[22],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *) LinearRecurrence[{0,0,0,0,0,394,0,0,0,0,0,-1 }, {1, 1, 3, 13, 29, 42, 365, 407, 1179, 5123, 11425, 16548}, 50] (* Stefano Spezia, Sep 30 2018 *) CoefficientList[Series[-(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x- 1)/(x^12 - 394*x^6 + 1), {x, 0, 50}], x] (* Stefano Spezia, Sep 30 2018 *)
-
PARI
vector(26, i, contfracpnqn(contfrac(sqrt(22), i))[2,1]) \\ Arkadiusz Wesolowski, Sep 29 2018
-
PARI
Vec(-(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x - 1)/(x^12 - 394*x^6 + 1) + O(x^50)) \\ Stefano Spezia, Sep 30 2018
Formula
From Colin Barker, Jul 16 2012: (Start)
a(n) = 394*a(n-6) - a(n-12).
G.f.: -(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x - 1)/(x^12 - 394*x^6 + 1). (End)