cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041035 Denominators of continued fraction convergents to sqrt(22).

Original entry on oeis.org

1, 1, 3, 13, 29, 42, 365, 407, 1179, 5123, 11425, 16548, 143809, 160357, 464523, 2018449, 4501421, 6519870, 56660381, 63180251, 183020883, 795263783, 1773548449, 2568812232, 22324046305, 24892858537
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[22],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
    LinearRecurrence[{0,0,0,0,0,394,0,0,0,0,0,-1 }, {1, 1, 3, 13, 29, 42, 365, 407, 1179, 5123, 11425, 16548}, 50] (* Stefano Spezia, Sep 30 2018 *)
    CoefficientList[Series[-(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x- 1)/(x^12 - 394*x^6 + 1), {x, 0, 50}], x] (* Stefano Spezia, Sep 30 2018 *)
  • PARI
    vector(26, i, contfracpnqn(contfrac(sqrt(22), i))[2,1]) \\ Arkadiusz Wesolowski, Sep 29 2018
    
  • PARI
    Vec(-(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x - 1)/(x^12 - 394*x^6 + 1) + O(x^50)) \\ Stefano Spezia, Sep 30 2018

Formula

From Colin Barker, Jul 16 2012: (Start)
a(n) = 394*a(n-6) - a(n-12).
G.f.: -(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x - 1)/(x^12 - 394*x^6 + 1). (End)