cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A010126 Continued fraction for sqrt(22).

Original entry on oeis.org

4, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2
Offset: 0

Views

Author

Keywords

Examples

			4.690415759823429554565630113... = 4 + 1/(1 + 1/(2 + 1/(4 + 1/(2 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A041034/A041035 (convergents), A248250 (Egyptian fraction), A010478 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[22],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{4},120,{8,1,2,4,2,1}] (* Harvey P. Dale, Jul 02 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 18000); x=contfrac(sqrt(22)); for (n=0, 20000, write("b010126.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 2, a(3^e) = 4, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 1/3^(s-1)). (End)
G.f.: (4 + x + 2*x^2 + 4*x^3 + 2*x^4 + x^5 + 4*x^6)/(1 - x^6). - Stefano Spezia, Jul 26 2025

A041034 Numerators of continued fraction convergents to sqrt(22).

Original entry on oeis.org

4, 5, 14, 61, 136, 197, 1712, 1909, 5530, 24029, 53588, 77617, 674524, 752141, 2178806, 9467365, 21113536, 30580901, 265760744, 296341645, 858444034, 3730117781, 8318679596, 12048797377, 104709058612
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[22],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
    CoefficientList[Series[- (x^11 - 4 x^10 + 5 x^9 - 14 x^8 + 61 x^7 - 136 x^6 - 197 x^5 - 136 x^4 - 61 x^3 - 14 x^2 - 5 x - 4)/(x^12 - 394 x^6 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    LinearRecurrence[{0,0,0,0,0,394,0,0,0,0,0,-1},{4,5,14,61,136,197,1712,1909,5530,24029,53588,77617},30] (* Harvey P. Dale, Mar 14 2017 *)

Formula

a(n) = 394*a(n-6)-a(n-12). G.f.: -(x^11 -4*x^10 +5*x^9 -14*x^8 +61*x^7 -136*x^6 -197*x^5 -136*x^4 -61*x^3 -14*x^2 -5*x -4)/(x^12-394*x^6+1). [Colin Barker, Jul 16 2012]
Showing 1-2 of 2 results.