cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042950 Row sums of the Lucas triangle A029635.

Original entry on oeis.org

2, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944
Offset: 0

Views

Author

Keywords

Comments

Map a binary sequence b=[ b_1,...] to a binary sequence c=[ c_1,...] so that C = 1/Product((1-x^i)^c_i == 1 + Sum b_i*x^i mod 2.
This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C = 1 + Sum e_i*x^i.
This sequence is d when b=[ 0,1,1,1,1,...].
Number of rises after n+1 iterations of morphism A007413.
a(n) written in base 2: a(0) = 10, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
Row sums of the Lucas triangle A029635. - Sergio Falcon, Mar 17 2014

Crossrefs

Programs

  • Magma
    [2] cat [2^(n+1) - 2^(n-1): n in [1..40]]; // Vincenzo Librandi, Aug 08 2015
    
  • Mathematica
    Table[ Ceiling[3*2^(n - 1)], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)
    a[0] = 2; a[1] = 3; a[n_] := 2a[n - 1]; Table[a[n], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)
    f[s_] := Append[s, 1 + Plus @@ s]; Nest[f, {2}, 32] (* Robert G. Wilson v, Jul 08 2006 *)
    CoefficientList[Series[(2 - x)/(1 - 2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 08 2006 *)
  • PARI
    a(n)=ceil(3*2^(n-1))
    
  • Python
    def A042950(n): return (3*2**n + int(n==0))//2 # G. C. Greubel, Jun 06 2025

Formula

G.f.: (2-x)/(1-2*x).
a(n) = 2*a(n-1), n > 1; a(0)=2, a(1)=3.
a(n) = A003945(n), for n > 0.
From Paul Barry, Dec 06 2004: (Start)
Binomial transform of 2, 1, 2, 1, 2, 1, ... = (3+(-1)^n)/2.
a(n) = (3*2^n + 0^n)/2. (End)
a(0) = 2, a(n) = 3*2^(n-1) = 2^n + 2^(n-1) for n >= 1. - Jaroslav Krizek, Aug 17 2009
a(n) = 2^(n+1) - 2^(n-1), for n > 0. - Ilya Gutkovskiy, Aug 08 2015
E.g.f.: (3*exp(2*x) + 1)/2. - G. C. Greubel, Jun 06 2025