cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A049481 Primes p such that p + 30 is also prime.

Original entry on oeis.org

7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 53, 59, 67, 71, 73, 79, 83, 97, 101, 107, 109, 127, 137, 149, 151, 163, 167, 181, 193, 197, 199, 211, 227, 233, 239, 241, 251, 263, 277, 281, 283, 307, 317, 337, 349, 353, 359, 367, 379, 389, 401, 409, 419, 431, 433, 449
Offset: 1

Views

Author

Keywords

Comments

30 = A002110(3) is the 3rd primorial number.
p and p+30 are not necessarily consecutive primes. Initial segment of A045320 is identical, but 113 is not in this sequence because 113 + 30 = 143 is divisible by 13.

Examples

			7 is a term since it is prime and 7 + 30 = 37 is also prime.
		

Crossrefs

Programs

Formula

Assuming Polignac's conjecture and the first Hardy-Littlewood conjecture: Limit_{n->oo} n*log(a(n))/primepi(a(n)) = (16/3)*A005597 = 3.52086... . - Alain Rocchelli, Oct 29 2024

A045458 Primes congruent to 5 mod 7.

Original entry on oeis.org

5, 19, 47, 61, 89, 103, 131, 173, 229, 257, 271, 313, 383, 397, 439, 467, 509, 523, 593, 607, 677, 691, 719, 733, 761, 859, 887, 929, 971, 1013, 1069, 1097, 1153, 1181, 1223, 1237, 1279, 1307, 1321, 1433, 1447, 1489, 1531, 1559, 1601, 1657, 1699, 1741, 1783
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A017041. - Michel Marcus, May 06 2014
Primes congruent to 5 mod 14. - Chai Wah Wu, Apr 28 2025

Crossrefs

Cf. A045320 (complement), A017041, A045471, A045473.

Programs

A045334 Primes congruent to {1, 2, 3, 4, 6} (mod 7).

Original entry on oeis.org

2, 3, 11, 13, 17, 23, 29, 31, 37, 41, 43, 53, 59, 67, 71, 73, 79, 83, 97, 101, 107, 109, 113, 127, 137, 139, 149, 151, 157, 163, 167, 179, 181, 191, 193, 197, 199, 211, 223, 227, 233, 239, 241, 251, 263, 269, 277
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500) | p mod 7 in [1, 2, 3, 4, 6]]; // Vincenzo Librandi, Aug 08 2012
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{1,2,3,4,6},Mod[#,7]]&] (* Vincenzo Librandi, Aug 08 2012 *)

A049482 Primes p such that p + 210 is also prime.

Original entry on oeis.org

13, 17, 19, 23, 29, 31, 41, 47, 53, 59, 61, 67, 71, 73, 83, 97, 101, 103, 107, 127, 137, 139, 149, 157, 163, 173, 179, 191, 199, 211, 223, 229, 233, 239, 251, 257, 269, 277, 281, 293, 311, 313, 331, 337, 347, 353, 359, 367, 383, 389, 397, 409, 421, 431, 433
Offset: 1

Views

Author

Keywords

Examples

			Both 13 and 13 + 210 = 223 are prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 84, PrimeQ[# + 210] &] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(p+210), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 23 2017

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Feb 23 2017

A049485 Primes p such that p + 510510 is also prime, where 510510 is the 7th primorial number A002110(7).

Original entry on oeis.org

19, 41, 43, 59, 71, 73, 79, 101, 103, 107, 109, 167, 173, 181, 197, 199, 241, 257, 263, 283, 293, 307, 313, 317, 337, 379, 397, 409, 421, 431, 433, 479, 491, 503, 509, 523, 547, 577, 599, 601, 613, 641, 643, 653, 659, 661, 683, 691, 701, 727, 733, 751, 769
Offset: 1

Views

Author

Keywords

Comments

p and p+510510 are not necessarily consecutive primes.

Examples

			19 is a term since it is prime and 19 + 510510 = 510529 is also prime.
		

Crossrefs

Programs

A049483 Primes p such that p + 2310 is also prime, where 2310 is the 5th primorial number A002110(5).

Original entry on oeis.org

23, 29, 31, 37, 41, 47, 61, 67, 71, 73, 79, 83, 89, 101, 107, 113, 127, 131, 137, 149, 157, 163, 167, 193, 211, 229, 233, 239, 241, 269, 281, 283, 307, 311, 337, 347, 349, 353, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 439, 443, 457, 467, 479
Offset: 1

Views

Author

Keywords

Comments

p and p+2310 are not necessarily consecutive primes.

Examples

			23 is a term since it is prime and 23 + 2310 = 2333 is also prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]],PrimeQ[#+2310]&] (* Harvey P. Dale, Nov 15 2012 *)
  • PARI
    isok(p) = isprime(p) && isprime(p + 2310); \\ Amiram Eldar, Mar 15 2025

A049484 Primes p such that p + 30030 is also prime, where 30030 is the 6th primorial number A002110(6).

Original entry on oeis.org

17, 29, 41, 59, 61, 67, 73, 79, 83, 89, 103, 107, 109, 131, 139, 151, 157, 167, 173, 181, 193, 211, 223, 229, 239, 241, 263, 277, 283, 293, 311, 317, 337, 359, 373, 397, 401, 419, 439, 461, 463, 467, 479, 487, 499, 509, 523, 547, 563, 601, 607, 613, 619, 631
Offset: 1

Views

Author

Keywords

Comments

p and p+30030 are not necessarily consecutive primes.

Examples

			17 is a term since it is prime and 17 + 30030 = 30047 is also prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]],PrimeQ[#+30030]&] (* Harvey P. Dale, Sep 21 2022 *)
  • PARI
    isok(p) = isprime(p) && isprime(p + 30030); \\ Amiram Eldar, Mar 15 2025

A215322 Primes congruent to {1, 2, 3, 4, 6} mod 11.

Original entry on oeis.org

2, 3, 13, 17, 23, 37, 47, 59, 61, 67, 79, 83, 89, 101, 103, 113, 127, 149, 157, 167, 179, 191, 193, 199, 211, 223, 233, 257, 277, 281, 311, 331, 347, 353, 367, 389, 397, 409, 419, 421, 431, 433, 443, 457, 463, 479, 487, 499, 509, 521, 523, 541, 563, 587
Offset: 1

Views

Author

Vincenzo Librandi, Aug 08 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(600) | p mod 11 in [1, 2, 3, 4, 6]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{1,2,3,4,6},Mod[#,11]]&]

A215323 Primes congruent to {1, 2, 3, 4, 6} mod 13.

Original entry on oeis.org

2, 3, 17, 19, 29, 41, 43, 53, 67, 71, 79, 97, 107, 131, 149, 157, 173, 197, 199, 211, 223, 227, 251, 263, 277, 313, 331, 353, 367, 379, 383, 409, 419, 431, 433, 443, 457, 461, 487, 509, 521, 523, 547, 563, 587, 599, 601, 613, 617, 641, 643, 653, 677, 691
Offset: 1

Views

Author

Vincenzo Librandi, Aug 08 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(800) | p mod 13 in [1, 2, 3, 4, 6]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{1,2,3,4,6},Mod[#,13]]&]

A215324 Primes congruent to {1, 2, 3, 4, 6} mod 17.

Original entry on oeis.org

2, 3, 19, 23, 37, 53, 71, 89, 103, 137, 139, 157, 173, 191, 193, 223, 227, 239, 241, 257, 293, 307, 359, 397, 409, 431, 443, 461, 463, 479, 499, 547, 563, 599, 601, 613, 631, 647, 683, 701, 733, 751, 769, 839, 853, 887, 907, 919, 937, 941, 953, 971
Offset: 1

Views

Author

Vincenzo Librandi, Aug 08 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | p mod 17 in [1, 2, 3, 4, 6]];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{1,2,3,4,6},Mod[#,17]]&]
Showing 1-10 of 11 results. Next