cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A045392 Primes congruent to 2 mod 7.

Original entry on oeis.org

2, 23, 37, 79, 107, 149, 163, 191, 233, 317, 331, 359, 373, 401, 443, 457, 499, 541, 569, 653, 709, 751, 821, 863, 877, 919, 947, 1031, 1087, 1129, 1171, 1213, 1283, 1297, 1367, 1381, 1409, 1423, 1451, 1493, 1549, 1619, 1759, 1787, 1801, 1871, 1913, 1997
Offset: 1

Views

Author

Keywords

Comments

2 and primes congruent to 9 mod 14. - Chai Wah Wu, Apr 28 2025

Crossrefs

Programs

A045471 Primes congruent to 4 mod 7.

Original entry on oeis.org

11, 53, 67, 109, 137, 151, 179, 193, 263, 277, 347, 389, 431, 487, 557, 571, 599, 613, 641, 683, 739, 809, 823, 907, 977, 991, 1019, 1033, 1061, 1103, 1117, 1187, 1201, 1229, 1327, 1439, 1453, 1481, 1523, 1579, 1607, 1621, 1663, 1733, 1747, 1789, 1831, 1873
Offset: 1

Views

Author

Keywords

Comments

Primes congruent to 11 mod 14. - Chai Wah Wu, Apr 28 2025

Crossrefs

Cf. A042990 (complement), A045458, A045473.

Programs

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A140444 Primes congruent to 1 (mod 14).

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 701, 743, 757, 827, 883, 911, 953, 967, 1009, 1051, 1093, 1163, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1709, 1723, 1877, 1933, 2003, 2017, 2087
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Comments

From Federico Provvedi, May 24 2018: (Start)
Also primes congruent to 1 (mod 7).
For every prime p > 2, primes congruent to 1 (mod p) are also congruent to 1 (mod 2*p).
Conjecture: The monic polynomial P(x) = (x+1)^7/x - 1/x = ((x+1)^7-1)/x is irreducible but factorizable over Galois field (mod a(n)) with exactly 6 distinct irreducible factors of degree 1. Examples:
P(x) == (5 + x) (6 + x) (7 + x) (10 + x) (14 + x) (23 + x) (mod 29)
P(x) == (3 + x) (9 + x) (23 + x) (28 + x) (33 + x) (40 + x) (mod 43)
P(x) == (24 + x) (27 + x) (35 + x) (40 + x) (42 + x) (52 + x) (mod 71)
P(x) == (5 + x) (8 + x) (65 + x) (84 + x) (86 + x) (98 + x) (mod 113)
... (End).
Primes in A131877. - Eric Chen, Jun 14 2018

Crossrefs

A090613 gives prime index.
Cf. A090614.
Cf. A131877.
Primes congruent to 1 (mod k): A000040 (k=1), A065091 (k=2), A002476 (k=3 and 6), A002144 (k=4), A030430 (k=5 and 10), this sequence (k=7 and 14), A007519 (k=8), A061237 (k=9 and 18), A141849 (k=11 and 22), A068228 (k=12), A268753 (k=13 and 26), A132230 (k=15 and 30), A094407 (k=16), A129484 (k=17 and 34), A141868 (k=19 and 38), A141881 (k=20), A124826 (k=21 and 42), A212374 (k=23 and 46), A107008 (k=24), A141927 (k=25 and 50), A141948 (k=27 and 54), A093359 (k=28), A141977 (k=29 and 58), A142005 (k=31 and 62), A133870 (k=32).

Programs

  • GAP
    Filtered(Filtered([1..2300],n->n mod 14=1),IsPrime); # Muniru A Asiru, Jun 27 2018
  • Magma
    [p: p in PrimesUpTo(3000)|p mod 14 in {1}]; // Vincenzo Librandi, Dec 18 2010
    
  • Maple
    select(isprime,select(n->modp(n,14)=1,[$1..2300])); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Select[Prime[Range[500]], Mod[#, 14] == 1 &]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    is(n)=isprime(n) && n%14==1 \\ Charles R Greathouse IV, Jul 02 2016
    

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, Jul 02 2016

Extensions

Simpler definition from N. J. A. Sloane, Jul 11 2008

A045368 Primes congruent to {2, 5} mod 7.

Original entry on oeis.org

2, 5, 19, 23, 37, 47, 61, 79, 89, 103, 107, 131, 149, 163, 173, 191, 229, 233, 257, 271, 313, 317, 331, 359, 373, 383, 397, 401, 439, 443, 457, 467, 499, 509, 523, 541, 569, 593, 607, 653, 677, 691, 709, 719, 733
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1500) | p mod 7 in {2, 5} ]; // Vincenzo Librandi, Aug 06 2012
  • Mathematica
    Select[Prime[Range[200]],MemberQ[{2,5},Mod[#,7]]&] (* Harvey P. Dale, Apr 28 2012 *)

A111367 Numbers k such that 7*k + 5 is prime.

Original entry on oeis.org

0, 2, 6, 8, 12, 14, 18, 24, 32, 36, 38, 44, 54, 56, 62, 66, 72, 74, 84, 86, 96, 98, 102, 104, 108, 122, 126, 132, 138, 144, 152, 156, 164, 168, 174, 176, 182, 186, 188, 204, 206, 212, 218, 222, 228, 236, 242, 248, 254, 258, 266, 278, 282, 284, 294, 308, 314, 324
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 07 2005

Keywords

Examples

			k=108 is a term because 7*k + 5 = 761 is prime.
		

Crossrefs

Programs

A140442 Primes congruent to 9 mod 14.

Original entry on oeis.org

23, 37, 79, 107, 149, 163, 191, 233, 317, 331, 359, 373, 401, 443, 457, 499, 541, 569, 653, 709, 751, 821, 863, 877, 919, 947, 1031, 1087, 1129, 1171, 1213, 1283, 1297, 1367, 1381, 1409, 1423, 1451, 1493, 1549, 1619, 1759, 1787, 1801, 1871, 1913, 1997
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Crossrefs

Primes arising in sequences A045437, A045458, A045471, A045473.
A090613 gives prime index.
Cf. A090614.

Programs

Formula

a(n) = A045392(n+1) = A045383(n+2). - Zak Seidov, Mar 12 2014
a(n) ~ 6n log n. - Charles R Greathouse IV, Jul 03 2016

Extensions

1451 inserted by R. J. Mathar, Sep 13 2008

A163603 Numbers k such that prime(k) == 5 (mod 7).

Original entry on oeis.org

3, 8, 15, 18, 24, 27, 32, 40, 50, 55, 58, 65, 76, 78, 85, 91, 97, 99, 108, 111, 123, 125, 128, 130, 135, 149, 154, 158, 164, 170, 180, 184, 191, 194, 200, 203, 207, 214, 216, 227, 229, 237, 242, 246, 252, 260, 266, 271
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 01 2009

Keywords

Comments

The asymptotic density of this sequence is 1/6 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[300], Mod[Prime[#], 7] == 5 &] (* G. C. Greubel, Jul 29 2017 *)
  • PARI
    isok(n) = (prime(n) % 7) == 5; \\ Michel Marcus, Jul 29 2017

Formula

a(n) = A000720(A045458(n)).
A000040(a(n)) = A045458(n).

Extensions

Remainder in definition corrected by R. J. Mathar, Aug 01 2009

A355025 a(1)=2; for n > 1, a(n) is the least new prime such that a(n-1) + a(n) is a multiple of 7.

Original entry on oeis.org

2, 5, 23, 19, 37, 47, 79, 61, 107, 89, 149, 103, 163, 131, 191, 173, 233, 229, 317, 257, 331, 271, 359, 313, 373, 383, 401, 397, 443, 439, 457, 467, 499, 509, 541, 523, 569, 593, 653, 607, 709, 677, 751, 691, 821, 719, 863, 733, 877, 761
Offset: 1

Views

Author

Zak Seidov, Jun 15 2022

Keywords

Examples

			2 + 3 = 5 is not a multiple of 7, but 2 + 5 = 7 is, so a(2) = 5.
5 + 2 = 7 is a multiple of 7, but 2 is already a term; 5 + 3 = 8, 5 + 7 = 12, ..., 5 + 19 = 24 are not multiples of 7, but 5 + 23 = 28 is, so a(3) = 23.
23 + 5 = 28 is a multiple of 7, but 5 is already a term; 19 is the next prime p such that 7 divides 23 + p, so a(4) = 19.
		

Crossrefs

Programs

  • Mathematica
    s = {2}; Do[p = 3; a = s[[-1]]; While[MemberQ[s, p] || Mod[a + p, 7] != 0, p = NextPrime[p]]; AppendTo[s, p], {100}]; s

Formula

a(n) = A045392((n+1)/2) if n is odd, A045458(n/2) if n is even. - Jon E. Schoenfield, Jun 15 2022
Showing 1-10 of 10 results.