cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A179474 a(n) = position of A045392(n) in A042997.

Original entry on oeis.org

1, 8, 10, 18, 24, 29, 32, 37, 43, 56, 57, 61, 63, 67, 73, 74, 79, 84, 87, 100, 105, 110, 118, 125, 126, 130, 134, 143, 150, 157, 160, 165, 175, 177, 184, 185, 187, 188, 193, 200, 205, 215, 230, 233, 235, 242, 248, 256, 258, 261, 262, 265, 272, 276, 278, 279, 290
Offset: 1

Views

Author

Zak Seidov, Jul 16 2010

Keywords

Comments

Positions of primes congruent to {2} mod 7 among primes congruent to {2,3,4,5,6} mod 7.

Crossrefs

Cf. A042997 Primes congruent to {2, 3, 4, 5, 6} mod 7, A045392 Primes congruent to {2} mod 7.

Programs

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A045368 Primes congruent to {2, 5} mod 7.

Original entry on oeis.org

2, 5, 19, 23, 37, 47, 61, 79, 89, 103, 107, 131, 149, 163, 173, 191, 229, 233, 257, 271, 313, 317, 331, 359, 373, 383, 397, 401, 439, 443, 457, 467, 499, 509, 523, 541, 569, 593, 607, 653, 677, 691, 709, 719, 733
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1500) | p mod 7 in {2, 5} ]; // Vincenzo Librandi, Aug 06 2012
  • Mathematica
    Select[Prime[Range[200]],MemberQ[{2,5},Mod[#,7]]&] (* Harvey P. Dale, Apr 28 2012 *)

A045383 Primes congruent to {0, 2} mod 7.

Original entry on oeis.org

2, 7, 23, 37, 79, 107, 149, 163, 191, 233, 317, 331, 359, 373, 401, 443, 457, 499, 541, 569, 653, 709, 751, 821, 863, 877, 919, 947, 1031, 1087, 1129, 1171, 1213, 1283, 1297, 1367, 1381, 1409, 1423, 1451, 1493
Offset: 1

Views

Author

Keywords

Comments

{7} UNION A045392.

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 7 in {0, 2} ]; // Vincenzo Librandi, Aug 07 2012
  • Mathematica
    Select[Prime[Range[700]],MemberQ[{0,2},Mod[#,7]]&] (* Vincenzo Librandi, Aug 07 2012 *)
    Select[Flatten[#+{0,2}&/@(7*Range[0,300])],PrimeQ] (* Harvey P. Dale, Oct 17 2021 *)

A023223 Primes p such that 7*p + 2 is also prime.

Original entry on oeis.org

3, 5, 11, 23, 47, 53, 71, 101, 107, 131, 167, 173, 197, 251, 257, 293, 311, 317, 353, 383, 431, 461, 467, 563, 587, 593, 683, 701, 773, 797, 821, 827, 863, 887, 911, 953, 977, 983, 1031, 1091, 1097, 1103, 1151, 1181, 1187, 1193, 1217, 1223, 1277, 1301, 1307, 1373
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A105772. Except for the first term all others are congruent to 5 (mod 6) because 7*(6n+1)+2 is divisible by 3. - John Cerkan, Jul 08 2016

Examples

			3 is in the sequence because 7 * 3 + 2 = 23, which is prime.
5 is in the sequence because 7 * 5 + 2 = 37, which is prime.
7 is not in the sequence because 7 * 7 + 2 = 51 = 3 * 17.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(7*n+2)]; // Vincenzo Librandi, Nov 19 2010
    
  • Mathematica
    Select[Prime[Range[250]], PrimeQ[7# + 2] &] (* Alonso del Arte, Apr 08 2015 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if(isprime(7*p+2), print1(p, ", "))); \\ Altug Alkan, Jul 08 2016

A024904 Numbers k such that 7*k - 5 is prime.

Original entry on oeis.org

1, 4, 6, 12, 16, 22, 24, 28, 34, 46, 48, 52, 54, 58, 64, 66, 72, 78, 82, 94, 102, 108, 118, 124, 126, 132, 136, 148, 156, 162, 168, 174, 184, 186, 196, 198, 202, 204, 208, 214, 222, 232, 252, 256, 258, 268, 274, 286, 288, 292, 294, 298, 306, 312, 316, 318, 334, 336, 342, 346
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A045392 (associated primes).

Programs

A045393 Primes congruent to {0, 1, 3, 4, 5, 6} mod 7.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 151, 157, 167, 173, 179, 181, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Keywords

Comments

Or, primes not congruent to 2 mod 7, i.e., primes not in A045392. - M. F. Hasler, Feb 21 2015

Crossrefs

Cf. A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(400) | p mod 7 in [0, 1, 3, 4, 5, 6]]; // Vincenzo Librandi, Aug 11 2012
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{0,1,3,4,5,6},Mod[#,7]]&] (* Vincenzo Librandi, Aug 11 2012 *)

A140442 Primes congruent to 9 mod 14.

Original entry on oeis.org

23, 37, 79, 107, 149, 163, 191, 233, 317, 331, 359, 373, 401, 443, 457, 499, 541, 569, 653, 709, 751, 821, 863, 877, 919, 947, 1031, 1087, 1129, 1171, 1213, 1283, 1297, 1367, 1381, 1409, 1423, 1451, 1493, 1549, 1619, 1759, 1787, 1801, 1871, 1913, 1997
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Crossrefs

Primes arising in sequences A045437, A045458, A045471, A045473.
A090613 gives prime index.
Cf. A090614.

Programs

Formula

a(n) = A045392(n+1) = A045383(n+2). - Zak Seidov, Mar 12 2014
a(n) ~ 6n log n. - Charles R Greathouse IV, Jul 03 2016

Extensions

1451 inserted by R. J. Mathar, Sep 13 2008

A274202 Primes congruent to 31 mod 65.

Original entry on oeis.org

31, 421, 811, 941, 1201, 1721, 2111, 2371, 3541, 3671, 3931, 4451, 5101, 5231, 5881, 6011, 6271, 6661, 6791, 8221, 8741, 9001, 9391, 9521, 9781, 10301, 10691, 11471, 11731, 12251, 12511, 12641, 13291, 13421, 13681, 14071, 14461, 14591, 14851, 15241, 15761
Offset: 1

Views

Author

Vincenzo Librandi, Jun 13 2016

Keywords

Comments

Subsequence of A030430 and A102732.

Crossrefs

Cf. similar sequences of the type primes congruent to k mod 2*k+3: A045392 (k=2), A102732 (k=5), A138629 (k=7), A141873 (k=8), A141914 (k=10), A141935 (k=11), A141989 (k=13), A142018 (k=14), A142086 (k=16), A142126 (k=17), A142216 (k=19), A142269 (k=20), A142373 (k=22), A142433 (k=23), A142555 (k=25), A142619 (k=26), A142755 (k=28), A142827 (k=29), this sequence (k=31), A154621 (k=32), A154624 (k=34), A154628 (k=35).

Programs

  • Magma
    [p: p in PrimesUpTo(20000) | p mod 65 eq 31];
  • Mathematica
    Select[Prime[Range[2000]], MemberQ[{31}, Mod[#, 65]] &]
    Select[Range[31,16000,65],PrimeQ] (* Harvey P. Dale, May 06 2018 *)
Showing 1-10 of 12 results. Next