cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A156104 Primes p such that p+36 is also prime.

Original entry on oeis.org

5, 7, 11, 17, 23, 31, 37, 43, 47, 53, 61, 67, 71, 73, 101, 103, 113, 127, 131, 137, 157, 163, 191, 193, 197, 227, 233, 241, 257, 271, 277, 281, 311, 313, 317, 331, 337, 347, 353, 373, 383, 397, 421, 431, 443, 463, 467, 487, 521, 541, 557, 563, 571, 577, 607
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Crossrefs

Cf. A156112.
Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), A252089 (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), this sequence (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p + 36)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(#+ 36)]&] (* Vincenzo Librandi, Oct 31 2012 *)

A049482 Primes p such that p + 210 is also prime.

Original entry on oeis.org

13, 17, 19, 23, 29, 31, 41, 47, 53, 59, 61, 67, 71, 73, 83, 97, 101, 103, 107, 127, 137, 139, 149, 157, 163, 173, 179, 191, 199, 211, 223, 229, 233, 239, 251, 257, 269, 277, 281, 293, 311, 313, 331, 337, 347, 353, 359, 367, 383, 389, 397, 409, 421, 431, 433
Offset: 1

Views

Author

Keywords

Examples

			Both 13 and 13 + 210 = 223 are prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 84, PrimeQ[# + 210] &] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(p+210), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 23 2017

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Feb 23 2017

A049485 Primes p such that p + 510510 is also prime, where 510510 is the 7th primorial number A002110(7).

Original entry on oeis.org

19, 41, 43, 59, 71, 73, 79, 101, 103, 107, 109, 167, 173, 181, 197, 199, 241, 257, 263, 283, 293, 307, 313, 317, 337, 379, 397, 409, 421, 431, 433, 479, 491, 503, 509, 523, 547, 577, 599, 601, 613, 641, 643, 653, 659, 661, 683, 691, 701, 727, 733, 751, 769
Offset: 1

Views

Author

Keywords

Comments

p and p+510510 are not necessarily consecutive primes.

Examples

			19 is a term since it is prime and 19 + 510510 = 510529 is also prime.
		

Crossrefs

Programs

A154114 Primes p such that p + 9699690 is also prime, where 9699690 is the 8th primorial number A002110(8).

Original entry on oeis.org

23, 37, 41, 43, 59, 73, 79, 83, 109, 113, 127, 137, 151, 163, 197, 199, 223, 227, 229, 233, 239, 251, 263, 269, 283, 313, 337, 349, 373, 383, 389, 409, 421, 449, 457, 463, 479, 523, 557, 599, 617, 647, 691, 727, 739, 743, 751, 757, 761, 773, 797, 811, 821
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p+9699690)]; // Vincenzo Librandi, Sep 02 2016
    
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[p+9699690],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[200]],PrimeQ[#+9699690]&]  (* Harvey P. Dale, Apr 26 2011 *)
  • PARI
    is(n)=isprime(n+9699690) && isprime(n) \\ Charles R Greathouse IV, Sep 02 2016

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Sep 02 2016

A049483 Primes p such that p + 2310 is also prime, where 2310 is the 5th primorial number A002110(5).

Original entry on oeis.org

23, 29, 31, 37, 41, 47, 61, 67, 71, 73, 79, 83, 89, 101, 107, 113, 127, 131, 137, 149, 157, 163, 167, 193, 211, 229, 233, 239, 241, 269, 281, 283, 307, 311, 337, 347, 349, 353, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 439, 443, 457, 467, 479
Offset: 1

Views

Author

Keywords

Comments

p and p+2310 are not necessarily consecutive primes.

Examples

			23 is a term since it is prime and 23 + 2310 = 2333 is also prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]],PrimeQ[#+2310]&] (* Harvey P. Dale, Nov 15 2012 *)
  • PARI
    isok(p) = isprime(p) && isprime(p + 2310); \\ Amiram Eldar, Mar 15 2025

A049484 Primes p such that p + 30030 is also prime, where 30030 is the 6th primorial number A002110(6).

Original entry on oeis.org

17, 29, 41, 59, 61, 67, 73, 79, 83, 89, 103, 107, 109, 131, 139, 151, 157, 167, 173, 181, 193, 211, 223, 229, 239, 241, 263, 277, 283, 293, 311, 317, 337, 359, 373, 397, 401, 419, 439, 461, 463, 467, 479, 487, 499, 509, 523, 547, 563, 601, 607, 613, 619, 631
Offset: 1

Views

Author

Keywords

Comments

p and p+30030 are not necessarily consecutive primes.

Examples

			17 is a term since it is prime and 17 + 30030 = 30047 is also prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]],PrimeQ[#+30030]&] (* Harvey P. Dale, Sep 21 2022 *)
  • PARI
    isok(p) = isprime(p) && isprime(p + 30030); \\ Amiram Eldar, Mar 15 2025

A252089 Primes p such that p + 26 is prime.

Original entry on oeis.org

3, 5, 11, 17, 41, 47, 53, 71, 83, 101, 113, 131, 137, 167, 173, 197, 251, 257, 281, 311, 347, 353, 383, 431, 461, 521, 587, 593, 617, 647, 683, 701, 743, 761, 797, 827, 857, 881, 911, 941, 971, 983, 1013, 1061, 1091, 1097, 1103, 1187, 1223, 1277, 1301, 1373
Offset: 1

Views

Author

Vincenzo Librandi, Dec 14 2014

Keywords

Examples

			17 is in this sequence because 17+26 = 43 is prime.
431 is in this sequence because 431+26 = 457 is prime.
		

Crossrefs

Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), this sequence (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), A156104 (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+26)];
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 26] &]

A055009 Smallest composite number x such that sigma(x + prime(n)#) = sigma(x) + prime(n)#, where prime(n)# = A002110(n) and sigma is A000203.

Original entry on oeis.org

434, 104, 44, 176, 2924, 34256, 83509, 539081, 254963216, 14600541172, 201346999808
Offset: 1

Views

Author

Labos Elemer, May 31 2000

Keywords

Comments

a(12) <= 14841476269604. a(13) <= 314064788156864. - Donovan Johnson, Mar 17 2013

Examples

			a(7) = 83509 = 37*37*61, sigma(83509)+510510 = 87234+510510 = sigma(83509+510510) = sigma(594019) = 597744.
		

Crossrefs

The prime solutions for particular sigma(x+primorial) = sigma(x)+primorial equations are in A049481-A049485.

Programs

  • PARI
    a(n)=my(P=prod(i=1,n,prime(i)),x=4); while(isprime(x) || sigma(x+P) != sigma(x)+P, x++); x \\ Charles R Greathouse IV, Feb 14 2013

Extensions

a(9)-a(10) from Donovan Johnson, Oct 15 2008
a(11) from Donovan Johnson, Mar 08 2013

A155760 Primes p such that p+30 and p+60 are prime.

Original entry on oeis.org

7, 11, 13, 23, 29, 37, 41, 43, 53, 67, 71, 79, 97, 107, 137, 151, 163, 167, 181, 197, 211, 233, 251, 277, 307, 337, 349, 359, 379, 389, 401, 419, 431, 449, 461, 541, 547, 557, 571, 587, 601, 613, 617, 631, 709, 727, 797, 823, 827, 877, 881, 907, 911, 937, 953
Offset: 1

Views

Author

Vincenzo Librandi, Jan 26 2009

Keywords

Comments

Subsequence of A049481. - Zak Seidov, Apr 10 2015

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p + 30) and IsPrime(p + 60)]; // Vincenzo Librandi, Oct 30 2012
    
  • Maple
    A155760:=n->`if`(isprime(n) and isprime(n+30) and isprime(n+60),n,NULL): seq(A155760(n), n=1..2000); # Wesley Ivan Hurt, Apr 11 2015
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[# +30] && PrimeQ[# + 60]&] (* Vincenzo Librandi, Oct 30 2012 *)
  • PARI
    select(p->isprime(p+30)&&isprime(p+60), primes(10^3)) \\ Charles R Greathouse IV, Apr 11 2015

A282423 a(n) = smallest k such that A282026(k) = n, or 0 if no such k exists.

Original entry on oeis.org

3, 2, 0, 13, 19, 0, 427, 4, 0, 0, 1, 0, 802, 99412, 0, 3097, 7, 0, 637, 0, 0, 7225627, 30898822, 0, 0, 280134277, 0, 31705902442, 43190647, 0, 965577112
Offset: 1

Views

Author

Andrey Zabolotskiy and Altug Alkan, Feb 14 2017, following a suggestion from N. J. A. Sloane

Keywords

Comments

a(n) is nonzero if n is in A282429.
For n>4 and nonzero a(n), 2*a(n)+3 is in A022004. For n>8 and nonzero a(n), 2*a(n)+3 is also in A153417. For n>16 and nonzero a(n), 2*a(n)+3 is also in A049481.

Examples

			a(10) = 0. Proof: Suppose 10 is a term of A282026. For the corresponding n, 2*n + 1 cannot be divisible by 5 because of A282026’s definition (gcd(10, 2*n + 1) = 1). So 2*n + 1 can be only of the form 10*k + 1, 10*k + 3, 10*k + 7, 10*k + 9. But 10*k + 1 + 2*2, 10*k + 3 + 2*1, 10*k + 7 + 2*4, 10*k + 9 + 2*8 are all composite and 1, 2, 4, 8 are relatively prime to any odd number. Since all of them are smaller than 10, this is the contradiction to the assumption that 10 is the term which is the smallest number for corresponding n. This also proves that a(5*k) = 0 for any k > 1.
		

Crossrefs

Showing 1-10 of 14 results. Next