A045616 Primes p such that 10^(p-1) == 1 (mod p^2).
3, 487, 56598313
Offset: 1
References
- J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, pp. 213-222 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
- Richard K. Guy, Unsolved Problems in Number Theory, Springer, 2004, A3.
Links
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
- Keith Conrad, The ring of integers in a radical extension.
- Richard Fischer, Fermat quotients B^(P-1) == 1 (mod P^2).
- Wilfrid Keller and Jörg Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp. 74 (2005), 927-936.
- Peter L. Montgomery, New solutions of a^(p-1) == 1 (mod p^2), Math. Comp. 61 (1993), 361-363.
- Math Overflow, Is the smallest primitive root modulo p a primitive root modulo p^2?, Jun 09 2010.
- Helmut Richter, The period length of the decimal expansion of a fraction.
- Helmut Richter, The Prime Factors Of 10^486-1.
- Siqiong Yao and Akira Toyohara, The length of the repeating decimal, arXiv:2507.01295 [math.NT], 2025. See p. 19.
- Samuel Yates, The Mystique of Repunits, Math. Mag. 51 (1978), 22-28.
Crossrefs
Programs
-
Haskell
import Math.NumberTheory.Moduli (powerMod) a045616 n = a045616_list !! (n-1) a045616_list = filter (\p -> powerMod 10 (p - 1) (p ^ 2) == 1) a000040_list' -- Reinhard Zumkeller, Nov 30 2015
-
Mathematica
A045616Q = PrimeQ@# && PowerMod[10, # - 1, #^2] == 1 &; Select[Range[1000000], A045616Q] (* JungHwan Min, Feb 04 2017 *) Select[Prime[Range[34*10^5]],PowerMod[10,#-1,#^2]==1&] (* Harvey P. Dale, Apr 10 2018 *)
-
PARI
lista(nn) = forprime(p=2, nn, if (Mod(10, p^2)^(p-1)==1, print1(p, ", "))); \\ Michel Marcus, Aug 16 2015
Comments