cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A256149 Square numbers n such that sigma(n) is a triangular number.

Original entry on oeis.org

1, 36, 441, 5625, 6084, 407044, 8444836, 17388900, 35070084, 40729924, 57790404, 80138304, 537822481, 588159504, 659821969, 918999225, 1820387556, 2179862721, 2599062361, 5110963081, 28816420516, 36144473689, 46082779561, 55145598561, 147225690000, 163405126756
Offset: 1

Views

Author

Antonio Roldán, Mar 16 2015

Keywords

Comments

This sequence is the intersection of A000290 and A045746.

Examples

			441 is in the sequence because 441 = 21^2 is square number, and sigma(441) = 441 + 147 + 63 + 49 + 21 + 9 + 7 + 3 + 1 = 741 = 38*39/2 is triangular number.
		

Crossrefs

Programs

  • Mathematica
    t = Accumulate[Range@ 10000]; Select[Range[10000]^2, MemberQ[t, DivisorSigma[1, #]] &] (* Michael De Vlieger, Mar 17 2015 *)
    Select[Range[500000]^2,OddQ[Sqrt[8DivisorSigma[1,#]+1]]&] (* Harvey P. Dale, Feb 25 2017 *)
  • PARI
    {for(i=1,10^6,n=i*i;if(ispolygonal(sigma(n), 3),print1(n,", ")))}

A256150 Oblong numbers n such that sigma(n) is a triangular number.

Original entry on oeis.org

2, 12, 56, 342, 992, 16256, 17822, 169332, 628056, 1189190, 2720850, 11085570, 35599122, 67100672, 1147210770, 1317435912, 1707135806, 7800334080, 11208986256, 13366943840, 17109032402, 17179738112, 46343540900, 58413331032, 83717924940, 204574837700, 274877382656, 445968192672, 589130699852
Offset: 1

Views

Author

Antonio Roldán, Mar 16 2015

Keywords

Comments

The numbers 12, 56, 992, 16256, 67100672, ... (A139256(n), twice even perfect numbers) are in the sequence because they are oblong (A139256(n) = 2^k*(2^k-1)) and sigma(A139256(n)) = sigma(2^k*(2^k-1)) = sigma(2^k)*sigma(2^k-1) = (2^(k+1)-1)*2^(k+1)/2 is a triangular number.
This sequence is the intersection of A002378 and A045746.

Examples

			2 is in the sequence because 2=1*2 is oblong, and sigma(2) = 1+2 = 3 = 2*3/2 is triangular.
		

Crossrefs

Programs

  • Mathematica
    Select[2 Accumulate[Range@10000], MemberQ[Accumulate[Range@10000], DivisorSigma[1, #]] &] (* Michael De Vlieger, Mar 17 2015 *)
  • PARI
    {for (i=1,i=10^6,n=i*(i+1);if(ispolygonal(sigma(n), 3),print(n)))}

A180929 Numbers whose sum of divisors is a pentagonal number.

Original entry on oeis.org

1, 6, 11, 104, 116, 129, 218, 363, 408, 440, 481, 534, 566, 568, 590, 638, 646, 684, 718, 807, 895, 979, 999, 1003, 1007, 1137, 1251, 1282, 1557, 1935, 2197, 2367, 2571, 2582, 2808, 2855, 3132, 3283, 3336, 3578, 3737, 3891, 3946, 3980, 4172, 4484, 4886, 5158
Offset: 1

Views

Author

Jonathan Vos Post, Sep 25 2010

Keywords

Examples

			a(1) = 1 because the sum of divisors of 1 is the pentagonal number 1.
a(2) = 6 because the sum of divisors of 6 is the pentagonal number 12.
a(3) = 11 because the sum of divisors of 11 is the pentagonal number 12.
a(4) = 104 because the sum of divisors of 104 is the pentagonal number 210.
a(5) = 116 because the sum of divisors of 116 is the pentagonal number 210.
a(6) = 129 because the sum of divisors of 129 is the pentagonal number 176.
a(7) = 218 because the sum of divisors of 218 is the pentagonal number 330.
		

Crossrefs

Numbers whose sum of divisors is a ...: A045746 (triangular number), A006532 (square), A180930 (hexagonal number).

Programs

  • Maple
    isA000326 := proc(n) if not issqr(24*n+1) then false; else sqrt(24*n+1)+1 ; (% mod 6) = 0 ; end if; end proc:
    for n from 1 to 5000 do if isA000326(numtheory[sigma](n)) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Sep 26 2010
  • Mathematica
    pnos=Table[(n (3n-1))/2,{n,500}]; okQ[n_]:=Module[{ds=DivisorSigma[1,n]},MemberQ[pnos,ds]] Select[Range[5000],okQ] (* Harvey P. Dale, Sep 26 2010 *)
    Select[Range[5200],IntegerQ[(Sqrt[1+24DivisorSigma[1,#]]+1)/6]&] (* Harvey P. Dale, Jun 14 2013 *)
  • PARI
    is(n)=ispolygonal(sigma(n),5) \\ Jason Yuen, Oct 14 2024

Formula

A000203(a(n)) is in A000326.

Extensions

Corrected and extended by R. J. Mathar and Harvey P. Dale, Sep 26 2010

A180930 Numbers whose sum of divisors is a hexagonal number.

Original entry on oeis.org

1, 5, 8, 12, 36, 54, 56, 87, 95, 160, 212, 328, 342, 356, 427, 531, 660, 672, 843, 852, 858, 909, 910, 940, 992, 1002, 1012, 1162, 1222, 1245, 1353, 1417, 1435, 1495, 1509, 1547, 1757, 1837, 1909, 1927, 1998, 2072, 2274, 2793, 2983, 3051, 3212, 3219, 3515, 3548, 3870
Offset: 1

Views

Author

Jonathan Vos Post, Sep 26 2010

Keywords

Comments

54, 56, 87, and 95 are the smallest four numbers whose sum of divisors is the same hexagonal number (120).

Examples

			a(1) = 1 because the sum of divisors of 1 is the hexagonal number 1.
a(2) = 5 because the sum of divisors of 5 is the hexagonal number 6.
a(3) = 8 because the sum of divisors of 8 is the hexagonal number 15.
a(4) = 12 because the sum of divisors of 12 is the hexagonal number 28.
		

Crossrefs

Numbers whose sum of divisors is a ...: A045746 (triangular number), A006532 (square), A180929 (pentagonal number).

Programs

  • Maple
    isA000384 := proc(n) if not issqr(8*n+1) then false; else sqrt(8*n+1)+1 ; (% mod 4) = 0 ; end if; end proc:
    for n from 1 to 4000 do if isA000384(numtheory[sigma](n)) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Sep 26 2010
  • Mathematica
    hnos=Table[n (2n-1),{n,500}]; okQ[n_]:=Module[{ds=DivisorSigma[1,n]},MemberQ[hnos,ds]] Select[Range[5000],okQ] (* Harvey P. Dale, Sep 26 2010 *)
  • PARI
    is(n)=ispolygonal(sigma(n),6) \\ Jason Yuen, Oct 14 2024

Formula

A000203(a(n)) is in A000384.

Extensions

Corrected and extended by several authors, Sep 27 2010

A113930 Numbers k such that sigma(k) and phi(k) are both triangular numbers.

Original entry on oeis.org

1, 2, 22, 3051, 3219, 3393, 5057, 8653, 75618, 95675, 100503, 102949, 104714, 287826, 438547, 522339, 537159, 688050, 2191200, 2317118, 2418548, 2507683, 2599128, 3212964, 4534573, 5367797, 6047913, 6302639, 7689149, 13758296, 14380145, 15342050, 16148979
Offset: 1

Views

Author

Giovanni Resta, Jan 30 2006

Keywords

Comments

phi(k) = A000010(k) is the Euler totient function, while sigma(k) = A000203(k) is the sum of divisors of k.

Examples

			sigma(100503) = 156520 = T(559) and phi(100503) = 61776 = T(351).
		

Crossrefs

Subsequence of A045746.

Programs

  • PARI
    isok(n) = ispolygonal(sigma(n), 3) && ispolygonal(eulerphi(n), 3); \\ Michel Marcus, Jan 26 2014

A291485 Numbers m such that sigma(x) = m*(m+1)/2 has at least one solution.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 12, 13, 15, 18, 20, 24, 27, 30, 31, 32, 35, 38, 39, 47, 48, 51, 55, 56, 62, 63, 64, 79, 80, 84, 90, 92, 95, 96, 104, 111, 116, 119, 120, 128, 135, 140, 142, 143, 144, 147, 152, 155, 156, 159, 160, 167, 168, 170, 171, 175, 176, 182, 184, 188, 191, 192, 195, 203, 207, 208
Offset: 1

Views

Author

Altug Alkan, Aug 24 2017

Keywords

Comments

Let b(n) be the smallest k such that sigma(k) is the n-th triangular number, or 0 if no such k exists. For n >= 1, b(n) sequence is 1, 2, 5, 0, 8, 0, 12, 22, 0, 0, 0, 45, 36, 0, 54, 0, 0, 98, 0, 104, 0, 0, 0, 152, 0, 0, 160, 0, 0, 200, ...

Examples

			15 is a term because sigma(54) = sigma(56) = sigma(87) = sigma(95) = A000217(15).
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Sigmas:= {seq(numtheory:-sigma(x),x=1..N*(N+1)/2)}:
    select(t -> member(t*(t+1)/2, Sigmas), [$1..N]); # Robert Israel, Aug 25 2017
  • Mathematica
    invT[n_] := (Sqrt[8*n+1]-1)/2; Union@ Select[invT /@ DivisorSigma[1, Range[ 208*209/2]], IntegerQ[#] && # <= 208 &] (* Giovanni Resta, Aug 25 2017 *)

A329704 Numbers k such that the sum of divisors of k (A000203) and the sum of proper divisors of k (A001065) are both triangular numbers (A000217).

Original entry on oeis.org

1, 2, 5, 36, 54, 441, 473, 6525, 52577, 124025, 683820, 1513754, 1920552, 6079931, 6762923, 14751657, 17052782, 17310942, 36543714, 49919939, 60260967, 251849052, 364535720, 372476909, 562047389, 670395564, 670440852, 783856979, 824626800, 1084201689, 1122603809
Offset: 1

Views

Author

Amiram Eldar, Feb 28 2020

Keywords

Comments

Are 1 and 36 the only terms that are also triangular numbers?
No other triangular terms up to A000217(10^8). - Michel Marcus, Mar 01 2020

Examples

			5 is a term since sigma(5) = 6 and sigma(5) - 5 = 1 are both triangular numbers.
		

Crossrefs

Intersection of A045745 and A045746.

Programs

  • Mathematica
    triQ[n_] := IntegerQ @ Sqrt[8*n+1]; Select[Range[10^5], triQ[(s = DivisorSigma[1, #])] && triQ[s - #] &]
  • PARI
    isok(k) = my(s=sigma(k)); ispolygonal(s, 3) && ispolygonal(s-k, 3); \\ Michel Marcus, Feb 29 2020

A232619 Numbers k such that sigma(k) and sigma(2*k) are triangular numbers.

Original entry on oeis.org

1, 3199808, 36210072, 48138616, 106449517, 109040509, 109903789, 110003837, 204102760401, 3050610977780, 3655577208308, 3660654715316, 3660725004788, 5607890017600, 6123048180800, 7412048520512, 7471435008064, 53218856249194, 53221469311786, 71505497845764, 103285924642372, 176553289677888, 176596975245888, 176600346573888
Offset: 1

Views

Author

Alex Ratushnyak, Nov 27 2013

Keywords

Examples

			sigma(3199808) = 6784086 = triangular(3683),  sigma(3199808*2) = 13621590 = triangular(5219), so 3199808 is in the sequence.
		

Crossrefs

A subsequence of A045746.

Programs

  • PARI
    is(n)=issquare(8*sigma(n)+1)&&issquare(8*sigma(2*n)+1) \\ Ralf Stephan, Nov 30 2013

Extensions

a(9) from Hiroaki Yamanouchi, Oct 02 2014
Terms a(10) onward from Max Alekseyev, Feb 21 2024
Showing 1-8 of 8 results.