cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045755 8-fold factorials: a(n) = Product_{k=0..n-1} (8*k+1).

Original entry on oeis.org

1, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625, 68586144251625, 5555477684381625, 494437513909964625, 47960438849266568625, 5035846079172989705625, 569050606946547836735625, 68855123440532288245010625, 8882310923828665183606370625
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. k-fold factorials : A000142, A001147, A007559, A007696, A008548, A008542, A045754.

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 8*j+1) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [1] cat [(&*[8*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    a := n->product(8*k+1), k=0..(n-1));
  • Mathematica
    Table[8^n*Pochhammer[1/8, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    a(n)=prod(k=0, n, 8*k+1);
    
  • Sage
    [product( (8*j+1) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n+1) = (8*n+1)(!^8).
a(n) = Sum_{k=0..n} (-8)^(n-k)*A048994(n, k); A048994 = Stirling-1 numbers.
E.g.f.: (1-8*x)^(-1/8).
G.f.: 1+x/(1-9x/(1-8x/(1-17x/(1-16x/(1-25x/(1-24x/(1-33x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-7)^n*Sum_{k=0..n} (8/7)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. [Mircea Merca, May 03 2012]
G.f.: 1/Q(0) where Q(k) = 1 - x*(8*k+1)/(1 - x*(8*k+8)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+1)/(2*x*(8*k+1) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(8*k+1)/(x*(8*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 8^n * Gamma(n + 1/8) / Gamma(1/8). - Artur Jasinski,Aug 23 2016
a(n) ~ sqrt(2*Pi) * 8^n * n^(n - 3/8)/(Gamma(1/8)*exp(n)). - Ilya Gutkovskiy, Sep 10 2016
D-finite with recurrence: a(n) +(-8*n+7)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/8^7)^(1/8)*(Gamma(1/8) - Gamma(1/8, 1/8)). - Amiram Eldar, Dec 20 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 14 2008 at the suggestion of Artur Jasinski.