cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A045809 9-ish numbers (end in 13, 37, 59, 91).

Original entry on oeis.org

13, 37, 59, 91, 113, 137, 159, 191, 213, 237, 259, 291, 313, 337, 359, 391, 413, 437, 459, 491, 513, 537, 559, 591, 613, 637, 659, 691, 713, 737, 759, 791, 813, 837, 859, 891, 913, 937, 959, 991, 1013, 1037, 1059, 1091, 1113, 1137, 1159, 1191, 1213, 1237
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a045809 n = a045809_list !! (n-1)
    a045809_list = findIndices (`elem` [13,37,59,91]) $ cycle [0..99]
    -- Reinhard Zumkeller, Jan 23 2012
  • Mathematica
    CoefficientList[Series[(13 + 24*x + 22*x^2 + 32*x^3 + 9*x^4)/(1 - x - x^4 + x^5), {x, 0, 80}], x] (* Wesley Ivan Hurt, Jan 23 2017 *)
    LinearRecurrence[{1,0,0,1,-1},{13,37,59,91,113},50] (* Harvey P. Dale, Feb 03 2024 *)

Formula

G.f.: x*(13+24*x+22*x^2+32*x^3+9*x^4)/(1-x-x^4+x^5). - Colin Barker, Jan 23 2012
a(n) = (50*n+4*i^(n*(n-1))+3*(-1)^n-25)/2, where i=sqrt(-1). - Bruno Berselli, Feb 22 2012

Extensions

More terms from Erich Friedman.
Showing 1-1 of 1 results.