cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045823 a(n) = sigma_3(2*n+1).

Original entry on oeis.org

1, 28, 126, 344, 757, 1332, 2198, 3528, 4914, 6860, 9632, 12168, 15751, 20440, 24390, 29792, 37296, 43344, 50654, 61544, 68922, 79508, 95382, 103824, 117993, 137592, 148878, 167832, 192080, 205380, 226982, 260408, 276948, 300764, 340704, 357912
Offset: 0

Views

Author

Keywords

Examples

			q + 28*q^3 + 126*q^5 + 344*q^7 + 757*q^9 + 1332*q^11 + 2198*q^13 + ...
		

Crossrefs

Equals A045819/2.
Bisection of A001158.

Programs

  • Magma
    [DivisorSigma(3, 2*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 02 2019
  • Maple
    A045823 := proc(n)
        numtheory[sigma][3](2*n+1) ;
    end proc:
    seq(A045823(n),n=0..30) ; # R. J. Mathar, Nov 25 2018
  • Mathematica
    DivisorSigma[3, Range[1, 75, 2]] (* Harvey P. Dale, Jan 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sigma(2 * n + 1, 3))} /* Michael Somos, Nov 29 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n *= 2; A = x * O(x^n); polcoeff( (eta(x^2 + A)^24 + eta(x + A)^16 * eta(x^4 + A)^8) / (2 * eta(x + A)^8 * eta(x^2 + A)^8), n))} /* Michael Somos, Nov 29 2007 */
    

Formula

Expansion of q^(-1) * ( E_4(q) - 9 * E_4(q^2) + 8 * E_4(q^4) ) / 240 in powers of q^2. - Michael Somos, Nov 29 2007
Expansion of q^(-1) * (eta(q^2)^24 + eta(q)^16 * eta(q^4)^8) / (2 * eta(q)^8 * eta(q^2)^8) in powers of q^2. - Michael Somos, Nov 29 2007
a(n) = b(2*n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = ((p^3)^(e+1) - 1) / (p^3 - 1) if p>2. - Michael Somos, Nov 29 2007
G.f.: (theta_3(q)^8 - theta_4(q)^8) / (32*q) = Sum_{n>=0} sigma_3(2*n+1)*q^(2*n). - Paul D. Hanna, Jun 02 2018
Sum_{k=0..n} a(k) ~ (15*zeta(4)/8) * n^4. - Amiram Eldar, Dec 12 2023

Extensions

More terms from Benoit Cloitre, Apr 12 2003