cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A002408 Expansion of 8-dimensional cusp form.

Original entry on oeis.org

0, 1, -8, 28, -64, 126, -224, 344, -512, 757, -1008, 1332, -1792, 2198, -2752, 3528, -4096, 4914, -6056, 6860, -8064, 9632, -10656, 12168, -14336, 15751, -17584, 20440, -22016, 24390, -28224, 29792, -32768, 37296, -39312, 43344, -48448, 50654, -54880, 61544, -64512, 68922
Offset: 0

Views

Author

Keywords

Comments

Essentially the same as A007331.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
"For Gamma, it is known that any modular form is a weighted homogeneous polynomial in Theta_Z, which has weight 1/2, and the modular form delta_8(t) := e^(Pi i tau) Product_{m=1..oo} ((1 - e^(Pi i m tau)) (1 + e^(2 Pi i m tau)))^8 = e^(Pi i tau) - 8 e^(2 Pi i tau) + 28 e^(3 Pi i tau) - 64 e^(4 Pi i tau) + 126 e^(5 Pi i tau) ... of weight 4." [Elkies, p. 1242]

Examples

			G.f. = q - 8*q^2 + 28*q^3 - 64*q^4 + 126*q^5 - 224*q^6 + 344*q^7 ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 187.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg 1994, p. 133.

Crossrefs

Programs

  • Maple
    q*product((1-q^(2*k-1))^8*(1-q^(4*k))^8, k=1..75);
  • Mathematica
    a[0] = 0; a[n_] := -(-1)^n*Sum[ Mod[n/d, 2]*d^3, {d, Divisors[n]}]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Jan 27 2012, after Michael Somos *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^4] / QPochhammer[ q^2])^8, {q, 0, n}]; (* Michael Somos, May 25 2014 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (prod(k=1, n, (1 -( k%4==0) * x^k) * (1 - (k%2==1) * x^k), 1 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */
    
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, (n/d%2) * d^3))}; /* Michael Somos, May 31 2005 */
    
  • Python
    from sympy import divisors
    def a(n): return 0 if n == 0 else -(-1)**n * sum([((n//d)%2) * d**3 for d in divisors(n)])
    print([a(n) for n in range(101)])  # Indranil Ghosh, Jun 24 2017
  • Sage
    A = ModularForms( Gamma0(4), 4, prec=70) . basis(); A[1] - 8*A[2] # _Michael Somos, May 25 2014
    

Formula

Expansion of (eta(q)* eta(q^4) / eta(q^2))^8 in powers of q. - Michael Somos, Jul 16 2004
Euler transform of period 4 sequence [-8, 0, -8, -8, ...]. - Michael Somos, Jul 16 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = +u^4*w*v + 16*u^3*w*v^2 + 16*u^2*w^2*v^2 + 256*u^3*w^3 + 256*u^3*w^2*v + 4096*u^2*w^3*v + 4096*u*w^4*v + 4096*u*w^3*v^2 - u^2*v^4 - 16*u^2*w*v^3 - 256*u*w^2*v^3 - 256*w^2*v^4. - Michael Somos, May 31 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^4*u6^4 + u1^3*u2*u3^3*u6 + 2*u1*u2^3*u3*u6^3 - u2^4*u3^4.
Expansion of q * psi(-q)^8 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Mar 20 2008
a(n) is multiplicative with a(2^e) = -8^e if e>0, a(p^e) = ((p^3)^(e+1) - 1) / (p^3 - 1). - Michael Somos, Mar 20 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 16 (t/i)^4 f(t) where q = exp(2 Pi i t).
G.f.: x * (Product_{k>0} (1 - x^(2*k-1)) * (1 - x^(4*k)))^8.
a(n) = -(-1)^n * A007331(n).
a(2*n) = -8 * A007331(n). a(2*n + 1) = A045823(n). - Michael Somos, May 25 2014
Dirichlet g.f.: zeta(s-3) * zeta(s) * (1 - 1/2^s) * (1 - 1/2^(s-4)). - Amiram Eldar, Nov 03 2023

A091986 a(0)=1, a(n) = sigma_3(2n).

Original entry on oeis.org

1, 9, 73, 252, 585, 1134, 2044, 3096, 4681, 6813, 9198, 11988, 16380, 19782, 25112, 31752, 37449, 44226, 55261, 61740, 73710, 86688, 97236, 109512, 131068, 141759, 160454, 183960, 201240, 219510, 257544, 268128, 299593, 335664, 358722, 390096, 442845
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Crossrefs

Bisection of A001158.

Programs

  • Mathematica
    Join[{1},Table[DivisorSigma[3,n],{n,2,80,2}]]  (* Harvey P. Dale, Feb 26 2011 *)
  • PARI
    a(n) = if(n < 1, 1, sigma(2*n, 3)); \\ Amiram Eldar, Dec 12 2023

Formula

Sum_{k=1..n} a(k) ~ (17*zeta(4)/8) * n^4. - Amiram Eldar, Dec 12 2023
G.f.: 1 + Sum_{k>=1} k^3*x^(lcm(k, 2)/2)/(1 - x^(lcm(k, 2)/2)). - Miles Wilson, Jul 10 2025

A092342 a(n) = sigma_3(3n+1).

Original entry on oeis.org

1, 73, 344, 1134, 2198, 4681, 6860, 11988, 15751, 25112, 29792, 44226, 50654, 73710, 79508, 109512, 117993, 160454, 167832, 219510, 226982, 299593, 300764, 390096, 389018, 500780, 493040, 620298, 619164, 779220, 756112, 934416, 912674, 1149823, 1092728
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Examples

			q + 73*q^4 + 344*q^7 + 1134*q^10 + 2198*q^13 + 4681*q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[3,3*Range[0,40]+1] (* Harvey P. Dale, Apr 22 2019 *)
  • PARI
    {a(n) = if(n<0, 0, sigma(3*n+1, 3))} /* Michael Somos, Aug 22 2007 */

Formula

Expansion of q^(-1/3) * c(q) * (c(q)^3 + b(q)^3 / 3) in powers of q where b(), c() are cubic AGM functions. - Michael Somos, Aug 22 2007
If b(3*n) = 0, b(3*n+1) = a(n), b(3*n+2) = A092343(n), then b(n) is multiplicative with b(3^e) = 0^e, b(p^e) = (p^(3*e+3) - 1) / (p^3 - 1) otherwise. - Michael Somos, Aug 22 2007
a(n) = A000731(n) + 81*A033690(n-1). - Michael Somos, Aug 22 2007
Sum_{k=0..n} a(k) ~ (20*zeta(4)/3) * n^4. - Amiram Eldar, Dec 12 2023

A092341 a(0)=1, a(n) = sigma_3(3n).

Original entry on oeis.org

1, 28, 252, 757, 2044, 3528, 6813, 9632, 16380, 20440, 31752, 37296, 55261, 61544, 86688, 95382, 131068, 137592, 183960, 192080, 257544, 260408, 335664, 340704, 442845, 441028, 553896, 551881, 703136, 682920, 858438, 834176, 1048572, 1008324, 1238328, 1213632
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Crossrefs

Trisection of A001158.

Programs

  • Mathematica
    Join[{1},DivisorSigma[3,3*Range[40]]] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n) = if(n < 1, 1, sigma(3*n, 3)); \\ Amiram Eldar, Dec 12 2023

Formula

Sum_{k=1..n} a(k) ~ (83*zeta(4)/12) * n^4. - Amiram Eldar, Dec 12 2023

A092343 a(n) = sigma_3(3n+2).

Original entry on oeis.org

9, 126, 585, 1332, 3096, 4914, 9198, 12168, 19782, 24390, 37449, 43344, 61740, 68922, 97236, 103824, 141759, 148878, 201240, 205380, 268128, 276948, 358722, 357912, 455886, 458208, 589806, 571788, 715572, 704970, 888264, 864360, 1061937, 1030302, 1285830
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Examples

			G.f. = 9 + 126*x + 585*x^2 + 1332*x^3 + 3096*x^4 + 4914*x^5 + 9198*x^6 + 12168*x^7 + ...
G.f. = 9*q^2 + 126*q^5 + 585*q^8 + 1332*q^11 + 3096*q^14 + 4914*q^17 + 9198*q^20 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[3,3n+2],{n,0,40}] (* Harvey P. Dale, Jul 02 2011 *)
  • PARI
    {a(n) = if( n<0, 0, sigma( 3*n + 2, 3))}; /* Michael Somos, May 30 2012 */

Formula

Expansion of q^(-2/3) * (a(q) * c(q))^2 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, May 30 2012
Convolution square of A144614. - Michael Somos, May 30 2012
Sum_{k=0..n} a(k) ~ (20*zeta(4)/3) * n^4. - Amiram Eldar, Dec 12 2023

A135828 Expansion of psi(x^2)^8 * (psi(x)^8 + psi(-x)^8) / 2 in powers of x^2 where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 36, 378, 2200, 8955, 28836, 78558, 188568, 410805, 828080, 1564686, 2804976, 4809370, 7927380, 12643560, 19594632, 29568204, 43626708, 63094550, 89501040, 124916931, 171803652, 232822908, 311683680, 412601490, 539849556, 699657642, 898801400, 1143680535
Offset: 0

Views

Author

Michael Somos, Nov 29 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 36*x + 378*x^2 + 2200*x^3 + 8955*x^4 + 28836*x^6 + 78558*x^7 + ...
G.f. = q^3 + 36*q^5 + 378*q^7 + 2200*q^9 + 8955*q^11 + 28836*q^13 + 78558*q^15 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma1(4), 8), 60)[4]; /* Michael Somos, Oct 15 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x]^8 (EllipticTheta[ 2, 0, x^(1/2)]^8 + EllipticTheta[ 2, Pi/4, x^(1/2)]^8 16) / 131072, {x, 0, 2 n + 3}]; (* Michael Somos, Oct 15 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n *= 2; A = x * O(x^n); polcoeff( ( eta(x^2 + A)^24 + eta(x + A)^16 * eta(x^4 + A)^8 ) / ( 2 * eta(x + A)^8 * eta(x^2 + A)^16 / eta(x^4 + A)^16 ), n))};
    

Formula

Expansion of q^(-3) * ( eta(q^2)^24 + eta(q)^16 * eta(q^4)^8 ) / ( 2 * eta(q)^8 * eta(q^2)^16 / eta(q^4)^16 ) in powers of q^2.
7680 * a(n) = A008774(2*n + 3).
Convolution of A007331 and A045823.

A045819 Theta series of E_8 lattice with respect to midpoint of edge.

Original entry on oeis.org

2, 56, 252, 688, 1514, 2664, 4396, 7056, 9828, 13720, 19264, 24336, 31502, 40880, 48780, 59584, 74592, 86688, 101308, 123088, 137844, 159016, 190764, 207648, 235986, 275184, 297756, 335664, 384160, 410760, 453964, 520816, 553896, 601528
Offset: 0

Views

Author

Keywords

Examples

			2*q^(1/2) + 56*q^(3/2) + 252*q^(5/2) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 1999, p. 123.

Crossrefs

Programs

Formula

G.f.: (1/2)*(theta_2^2*theta_3^6 + theta_2^6*theta_3^2).
a(n) = 2*sigma_3(2n+1). - Benoit Cloitre, Apr 12 2003
a(n) = 2 * A045823(n). - Alois P. Heinz, Mar 21 2021
Sum_{k=0..n} a(k) ~ (15*zeta(4)/4) * n^4. - Amiram Eldar, Dec 12 2023

Extensions

More terms from Benoit Cloitre, Apr 12 2003

A081861 a(n) = (1/24)*(sigma_3(2*n-1) - sigma_1(2*n-1)).

Original entry on oeis.org

0, 1, 5, 14, 31, 55, 91, 146, 204, 285, 400, 506, 655, 850, 1015, 1240, 1552, 1804, 2109, 2562, 2870, 3311, 3971, 4324, 4914, 5730, 6201, 6990, 8000, 8555, 9455, 10846, 11536, 12529, 14192, 14910, 16206, 18371, 19088, 20540, 22990, 23821, 25794
Offset: 1

Views

Author

Benoit Cloitre, Apr 11 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[3,2n-1]-DivisorSigma[1,2n-1])/24,{n,50}] (* Harvey P. Dale, Dec 15 2012 *)
  • PARI
    a(n) = my(f = factor(2*n-1)); (sigma(f, 3) - sigma(f)) / 24; \\ Amiram Eldar, Jan 04 2025

Formula

a(n) = (A045823(n-1) - A008438(n-1)) / 24. - Amiram Eldar, Jan 04 2025

A204386 Expansion of (theta_2(q)^8 + 4 * theta_2(q^2)^8) / 256 in powers of q^2.

Original entry on oeis.org

1, 12, 28, 96, 126, 336, 344, 768, 757, 1512, 1332, 2688, 2198, 4128, 3528, 6144, 4914, 9084, 6860, 12096, 9632, 15984, 12168, 21504, 15751, 26376, 20440, 33024, 24390, 42336, 29792, 49152, 37296, 58968, 43344, 72672, 50654, 82320, 61544, 96768
Offset: 1

Views

Author

Michael Somos, Jan 15 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			x + 12*x^2 + 28*x^3 + 96*x^4 + 126*x^5 + 336*x^6 + 344*x^7 + 768*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[(EllipticTheta[2, 0, q^(1/2)]^8 + 4*EllipticTheta[2, 0, q]^8)/256, {q, 0, n}];  Table[a[n], {n,1,50}] (* G. C. Greubel, Apr 13 2018 *)
    CoefficientList[Series[(EllipticTheta[2,0,q^(1/2)]^8 +4*EllipticTheta[2, 0, q]^8)/ 256, {q, 0, 50}], q] (* Vaclav Kotesovec, Apr 13 2018 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2, sigma( n, 3), 12 * sumdiv( n/2, d, (n/2/d%2) * d^3)))}
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^8 + 4 * x * (eta(x^4 + A)^2 / eta(x^2 + A))^8, n))}

Formula

Expansion of x * psi(x)^8 + 4 * x^2 * psi(x^2)^8 in powers of x where psi() is a Ramanujan theta function.
Expansion of (eta(q^2)^2 / eta(q))^8 + 4 * (eta(q^4)^2 / eta(q^2))^8 in powers of q.
a(n) is multiplicative with a(2^e) = 3/2 * 8^e if e>0, a(p^e) = ((p^3) ^ (e+1) - 1) / (p^3 - 1).
a(2*n + 1) = A045823(n). a(2*n) = 12 * A007331(n).
Convolution of this sequence with A004018 is A050468.
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 + 1/2^(s-2)) * (1 - 1/2^s) * zeta(s-3) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^4, where c = 5*Pi^4/1536 = 0.317086... . (End)

A291124 Expansion of phi(x)^6 * phi(-x)^2 in powers of x where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 8, 16, -32, -144, -16, 448, 192, -912, -88, 2016, -352, -4032, 176, 5504, 64, -7056, 400, 12112, 352, -18144, -768, 21312, -448, -25536, -968, 35168, 1216, -49536, 1584, 56448, -1280, -56208, 1408, 78624, -384, -109008, -1296, 109760, -704, -114912, -1584
Offset: 0

Views

Author

Michael Somos, Aug 17 2017

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700)

Examples

			G.f. = 1 + 8*x + 16*x^2 - 32*x^3 - 144*x^4 - 16*x^5 + 448*x^6 + 192*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(16), 4), 42); A[1] + 8*A[2] + 16*A[3] - 32*A[4] - 144*A[5] - 16*A[6] + 448*A[7] + 192*A[8] - 912*A[9];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^6 EllipticTheta[ 4, 0, x]^2, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[x^2]^7 / (QPochhammer[ x]^2 QPochhammer[ x^4]^3))^4, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3))^4, n))};
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec((eta(q^2)^7/(eta(q)^2*eta(q^4)^3))^4)} \\ Altug Alkan, Mar 21 2018
    

Formula

Expansion of (eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3))^4 in powers of q.
Euler transform of period 4 sequence [8, -20, 8, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 512 (t/i)^4 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A045820.
G.f.: Product_{k>0} (1 - x^(2*k))^28 / ((1 - x^k)^8 * (1 - x^(4*k))^12).
a(2*n + 1) = 8 * A030211(n). a(4*n + 2) = 16 * A045823(n).
a(2*n) = 16 * (-1)^n * (-sigma_3(n) + sigma_3(n/4)) where sigma_3(n) is the sum of the cubes of the divisors of n if n is an integer else 0.
Convolution square of A207541.
Showing 1-10 of 11 results. Next