cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A302201 E.g.f.: exp (e.g.f. for the "cusp form" A002408).

Original entry on oeis.org

1, 1, -7, 5, 193, -1273, -2707, 118827, -853551, -4449558, 165958491, -1452523488, -8908621939, 425284211536, -4941880813097, -19601696580922, 1717461768840017, -27768623874128015, 11072293576957975, 9641864176354481835
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2018

Keywords

Comments

Whenever there is an important cusp form (such as A002408, or the Ramanujan tau or Delta function A000594), with e.g.f. C(x), say, it seems that the sequence with e.g.f. exp(C(x)) should also have some interesting properties.

Crossrefs

Programs

  • Mathematica
    eta = QPochhammer;
    cc = CoefficientList[#, x]&;
    seq[n_] := Module[{A}, A = O[x]^n; cc[Exp[(cc[x*(eta[x + A]*(eta[x^4 + A]/eta[x^2 + A]))^8]*cc[Exp[x + x*A]]) . x^Range[0, n]] + O[x]^n]* Range[0, n-1]!];
    seq[20] (* Jean-François Alcover, Sep 07 2019, from PARI *)
  • PARI
    seq(n)={my(A=O(x^n)); Vec(serlaplace(exp(serconvol(x*(eta(x + A) * eta(x^4 + A) / eta(x^2 + A))^8, exp(x + x*A)))))} \\ Andrew Howroyd, Nov 04 2018

A007331 Fourier coefficients of E_{infinity,4}.

Original entry on oeis.org

0, 1, 8, 28, 64, 126, 224, 344, 512, 757, 1008, 1332, 1792, 2198, 2752, 3528, 4096, 4914, 6056, 6860, 8064, 9632, 10656, 12168, 14336, 15751, 17584, 20440, 22016, 24390, 28224, 29792, 32768, 37296, 39312, 43344, 48448, 50654, 54880, 61544, 64512
Offset: 0

Views

Author

Keywords

Comments

E_{infinity,4} is the unique normalized weight-4 modular form for Gamma_0(2) with simple zeros at i*infinity. Since this has level 2, it is not a cusp form, in contrast to A002408.
a(n+1) is the number of representations of n as a sum of 8 triangular numbers (from A000217). See the Ono et al. link, Theorem 5.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) gives the sum of cubes of divisors d of n such that n/d is odd. This is called sigma^#3(n) in the Ono et al. link. See a formula below. - _Wolfdieter Lang, Jan 12 2017

Examples

			G.f. = q + 8*q^2 + 28*q^3 + 64*q^4 + 126*q^5 + 224*q^6 + 344*q^7 + 512*q^8 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139, Ex (ii).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809, A076577.

Programs

  • Magma
    Basis( ModularForms( Gamma0(2), 4), 10) [2]; /* Michael Somos, May 27 2014 */
    
  • Maple
    nmax:=40: seq(coeff(series(x*(product((1-x^k)^8*(1+x^k)^16, k=1..nmax)), x, n+1), x, n), n=0..nmax); # Vaclav Kotesovec, Oct 14 2015
  • Mathematica
    Prepend[Table[Plus @@ (Select[Divisors[k + 1], OddQ[(k + 1)/#] &]^3), {k, 0, 39}], 0] (* Ant King, Dec 04 2010 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^8 / 256, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^3 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *)
    f[n_] := Total[(2n/Select[ Divisors[ 2n], Mod[#, 4] == 2 &])^3]; Flatten[{0, Array[f, 40] }] (* Robert G. Wilson v, Mar 26 2015 *)
    nmax=60; CoefficientList[Series[x*Product[(1-x^k)^8 * (1+x^k)^16, {k,1,nmax}],{x,0,nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
    QP = QPochhammer; s = q * (QP[-1, q]/2)^16 * QP[q]^8 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^3))}; /* Michael Somos, May 31 2005 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^8, n))}; /* Michael Somos, May 31 2005 */
    
  • PARI
    a(n)=my(e=valuation(n,2)); 8^e * sigma(n/2^e, 3) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from sympy import divisors
    def a(n):
        return 0 if n == 0 else sum(((n//d)%2)*d**3 for d in divisors(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
  • Sage
    ModularForms( Gamma0(2), 4, prec=33).1; # Michael Somos, Jun 04 2013
    

Formula

G.f.: q * Product_{k>=1} (1-q^k)^8 * (1+q^k)^16. - corrected by Vaclav Kotesovec, Oct 14 2015
a(n) = Sum_{0
G.f.: Sum_{n>0} n^3*x^n/(1-x^(2*n)). - Vladeta Jovovic, Oct 24 2002
Expansion of Jacobi theta constant theta_2(q)^8 / 256 in powers of q.
Expansion of eta(q^2)^16 / eta(q)^8 in powers of q. - Michael Somos, May 31 2005
Expansion of x * psi(x)^8 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jan 15 2012
Expansion of (Q(x) - Q(x^2)) / 240 in powers of x where Q() is a Ramanujan Lambert series. - Michael Somos, Jan 15 2012
Expansion of E_{gamma,2}^2 * E_{0,4} in powers of q.
Euler transform of period 2 sequence [8, -8, ...]. - Michael Somos, May 31 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - u^2*w + 16*u*v*w - 32*v^2*w + 256*v*w^2. - Michael Somos, May 31 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 16^(-1) (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A035016. - Michael Somos, Jan 11 2009
Multiplicative with a(2^e) = 2^(3e), a(p^e) = (p^(3(e+1))-1)/(p^3-1). - Mitch Harris, Jun 13 2005
Dirichlet convolution of A154955 by A001158. Dirichlet g.f. zeta(s)*zeta(s-3)*(1-1/2^s). - R. J. Mathar, Mar 31 2011
A002408(n) = -(-1)^n * a(n).
Convolution square of A008438. - Michael Somos, Jun 15 2014
a(1) = 1, a(n) = (8/(n-1))*Sum_{k=1..n-1} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
Sum_{k=1..n} a(k) ~ c * n^4, where c = Pi^4/384 = 0.253669... (A222072). - Amiram Eldar, Oct 19 2022

Extensions

Additional comments from Barry Brent (barryb(AT)primenet.com)
Wrong Maple program replaced by Vaclav Kotesovec, Oct 14 2015
a(0)=0 prepended by Vaclav Kotesovec, Oct 14 2015

A002434 Theta series of Borcherds' 27-dimensional unimodular lattice T_27.

Original entry on oeis.org

1, 0, 0, 1640, 119574, 1497600, 16733184, 108081792, 588805308, 2544826368, 9516533760, 31328289720, 92876121704, 252846217728, 638250227712, 1511780699520, 3387237774102, 7228330481664
Offset: 0

Keywords

Programs

  • Maple
    th3^27-54*th3^19*delta8+216*th3^11*delta8^2-1024*th3^3*delta8^3 # (th3= A000122, delta8= A002408).
  • Mathematica
    terms = 18; QP = QPochhammer; th3 = EllipticTheta[3, 0, q]; delta8 = q*(QP[q]*(QP[q^4]/QP[q^2]))^8; s = th3^27 - 54*th3^19*delta8 + 216*th3^11*delta8^2 - 1024*th3^3*delta8^3 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 06 2017 *)

A002490 Theta series of 27-dimensional unimodular lattice with root system A_1 and a parity vector of norm 3.

Original entry on oeis.org

1, 0, 2, 1652, 119550, 1497328, 16733124, 108084480, 588808172, 2544811584, 9516509988, 31328336284, 92876219432, 252846150384, 638250041288, 1511780647680, 3387237676950, 7228330859840, 14769380958438, 29023337216604, 55108233751768, 101433859301088
Offset: 0

Keywords

References

  • R. Bacher and B. B. Venkov, Réseaux entiers unimodulaires sans racine en dimension 27 et 28, in Réseaux euclidiens, designs sphériques et formes modulaires, pp. 212-267, Enseignement Math., Geneva, 2001.

Crossrefs

Formula

G.f.: theta3^27 - 54*theta3^19*delta8 + 218*theta3^11*delta8^2 - 1024*theta3^3*delta8^3 where theta3 = A000122 and delta8 = A002408. - Sean A. Irvine, Feb 28 2020

Extensions

More terms from Sean A. Irvine, Feb 28 2020

A002482 Theta series of Borcherds' 27-dimensional unimodular lattice U_27.

Original entry on oeis.org

1, 0, 0, 2664, 101142, 1645056, 16045056, 110146176, 584713404, 2549741568, 9515943936, 31314087864, 92917622376, 252775586304, 638328674304, 1511740886400, 3387163161366, 7228598851584
Offset: 0

Keywords

Programs

  • Maple
    th3^27-54*th3^19*delta8+216*th3^11*delta8^2 (th3 = A000122, delta8 = A002408).
  • Mathematica
    terms = 18; QP = QPochhammer; th3 = EllipticTheta[3, 0, q]; delta8 = q*(QP[q]*(QP[q^4]/QP[q^2]))^8; s = th3^27 - 54*th3^19*delta8 + 216*th3^11*delta8^2 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 06 2017 *)

A002495 Theta series of 27-dimensional unimodular lattice with root system A_1 with no parity vector of norm 3.

Original entry on oeis.org

1, 0, 2, 2676, 101118, 1644784, 16044996, 110148864, 584716268, 2549726784, 9515920164, 31314134428, 92917720104, 252775518960, 638328487880, 1511740834560, 3387163064214, 7228599229760, 14768913424614, 29023937463900, 55107648867544, 101434033397472
Offset: 0

Keywords

References

  • R. Bacher and B. B. Venkov, Réseaux entiers unimodulaires sans racine en dimension 27 et 28, in Réseaux euclidiens, designs sphériques et formes modulaires, pp. 212-267, Enseignement Math., Geneva, 2001.

Crossrefs

Formula

G.f.: theta3^27 - 54*theta3^19*delta8 + 218*theta3^11*delta8^2 where theta3 = A000122 and delta8 = A002408. - Sean A. Irvine, Feb 28 2020

Extensions

More terms from Sean A. Irvine, Feb 28 2020

A034998 Expansion of Product (1+q^(2k-1))^(-8)*(1+q^(4k))^(-8), k=1..inf.

Original entry on oeis.org

1, -8, 36, -128, 402, -1152, 3064, -7680, 18351, -42112, 93300, -200448, 419150, -855552, 1708632, -3345408, 6432867, -12166272, 22659976, -41609856, 75404754, -134973184, 238825344, -418023936, 724242492
Offset: 0

Keywords

Crossrefs

Reciprocal of A007331. Cf. A002408.

A066234 Theta series of GH39, an extremal unimodular 39-dimensional lattice.

Original entry on oeis.org

1, 0, 0, 0, 23790, 1525056, 44420480, 768892800, 9093033300, 80361232640, 564369691392, 3290997166080, 16459430933400, 72362333294400, 285055580709120, 1021529151913088, 3371180795232510, 10348222578720000
Offset: 0

Author

Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Dec 19 2001

Keywords

Crossrefs

Cf. A000122 (theta_3), A002408 (Del8).

Formula

theta_3^39 - 78*theta_3^31*Del8 + 1248*theta_3^23*Del8^2 - 1976*theta_3^15*Del8^3.
Showing 1-8 of 8 results.