A302201
E.g.f.: exp (e.g.f. for the "cusp form" A002408).
Original entry on oeis.org
1, 1, -7, 5, 193, -1273, -2707, 118827, -853551, -4449558, 165958491, -1452523488, -8908621939, 425284211536, -4941880813097, -19601696580922, 1717461768840017, -27768623874128015, 11072293576957975, 9641864176354481835
Offset: 0
-
eta = QPochhammer;
cc = CoefficientList[#, x]&;
seq[n_] := Module[{A}, A = O[x]^n; cc[Exp[(cc[x*(eta[x + A]*(eta[x^4 + A]/eta[x^2 + A]))^8]*cc[Exp[x + x*A]]) . x^Range[0, n]] + O[x]^n]* Range[0, n-1]!];
seq[20] (* Jean-François Alcover, Sep 07 2019, from PARI *)
-
seq(n)={my(A=O(x^n)); Vec(serlaplace(exp(serconvol(x*(eta(x + A) * eta(x^4 + A) / eta(x^2 + A))^8, exp(x + x*A)))))} \\ Andrew Howroyd, Nov 04 2018
A007331
Fourier coefficients of E_{infinity,4}.
Original entry on oeis.org
0, 1, 8, 28, 64, 126, 224, 344, 512, 757, 1008, 1332, 1792, 2198, 2752, 3528, 4096, 4914, 6056, 6860, 8064, 9632, 10656, 12168, 14336, 15751, 17584, 20440, 22016, 24390, 28224, 29792, 32768, 37296, 39312, 43344, 48448, 50654, 54880, 61544, 64512
Offset: 0
G.f. = q + 8*q^2 + 28*q^3 + 64*q^4 + 126*q^5 + 224*q^6 + 344*q^7 + 512*q^8 + ...
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139, Ex (ii).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1001 from T. D. Noe)
- B. Brent, Quadratic Minima and Modular Forms, Experimental Mathematics, v.7 no.3, 257-274.
- H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 187.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
- K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94. Theorem 5.
- H. Rosengren, Sums of triangular numbers from the Frobenius determinant, arXiv:math/0504272 [math.NT], 2005.
- Index entries for sequences mentioned by Glaisher.
Number of ways of writing n as a sum of k triangular numbers, for k=1,...:
A010054,
A008441,
A008443,
A008438,
A008439,
A008440,
A226252,
A007331,
A226253,
A226254,
A226255,
A014787,
A014809,
A076577.
-
Basis( ModularForms( Gamma0(2), 4), 10) [2]; /* Michael Somos, May 27 2014 */
-
nmax:=40: seq(coeff(series(x*(product((1-x^k)^8*(1+x^k)^16, k=1..nmax)), x, n+1), x, n), n=0..nmax); # Vaclav Kotesovec, Oct 14 2015
-
Prepend[Table[Plus @@ (Select[Divisors[k + 1], OddQ[(k + 1)/#] &]^3), {k, 0, 39}], 0] (* Ant King, Dec 04 2010 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^8 / 256, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
a[ n_] := If[ n < 1, 0, Sum[ d^3 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *)
f[n_] := Total[(2n/Select[ Divisors[ 2n], Mod[#, 4] == 2 &])^3]; Flatten[{0, Array[f, 40] }] (* Robert G. Wilson v, Mar 26 2015 *)
nmax=60; CoefficientList[Series[x*Product[(1-x^k)^8 * (1+x^k)^16, {k,1,nmax}],{x,0,nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
QP = QPochhammer; s = q * (QP[-1, q]/2)^16 * QP[q]^8 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
-
{a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^3))}; /* Michael Somos, May 31 2005 */
-
{a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^8, n))}; /* Michael Somos, May 31 2005 */
-
a(n)=my(e=valuation(n,2)); 8^e * sigma(n/2^e, 3) \\ Charles R Greathouse IV, Sep 09 2014
-
from sympy import divisors
def a(n):
return 0 if n == 0 else sum(((n//d)%2)*d**3 for d in divisors(n))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
-
ModularForms( Gamma0(2), 4, prec=33).1; # Michael Somos, Jun 04 2013
A002434
Theta series of Borcherds' 27-dimensional unimodular lattice T_27.
Original entry on oeis.org
1, 0, 0, 1640, 119574, 1497600, 16733184, 108081792, 588805308, 2544826368, 9516533760, 31328289720, 92876121704, 252846217728, 638250227712, 1511780699520, 3387237774102, 7228330481664
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. Bacher and B. B. Venkov, Réseaux entiers unimodulaires sans racine en dimension 27 et 28, in Réseaux euclidiens, designs sphériques et formes modulaires, pp. 212-267, Enseignement Math., Geneva, 2001.
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Preface to 3rd ed.
-
th3^27-54*th3^19*delta8+216*th3^11*delta8^2-1024*th3^3*delta8^3 # (th3= A000122, delta8= A002408).
-
terms = 18; QP = QPochhammer; th3 = EllipticTheta[3, 0, q]; delta8 = q*(QP[q]*(QP[q^4]/QP[q^2]))^8; s = th3^27 - 54*th3^19*delta8 + 216*th3^11*delta8^2 - 1024*th3^3*delta8^3 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 06 2017 *)
A002490
Theta series of 27-dimensional unimodular lattice with root system A_1 and a parity vector of norm 3.
Original entry on oeis.org
1, 0, 2, 1652, 119550, 1497328, 16733124, 108084480, 588808172, 2544811584, 9516509988, 31328336284, 92876219432, 252846150384, 638250041288, 1511780647680, 3387237676950, 7228330859840, 14769380958438, 29023337216604, 55108233751768, 101433859301088
Offset: 0
- R. Bacher and B. B. Venkov, Réseaux entiers unimodulaires sans racine en dimension 27 et 28, in Réseaux euclidiens, designs sphériques et formes modulaires, pp. 212-267, Enseignement Math., Geneva, 2001.
A002482
Theta series of Borcherds' 27-dimensional unimodular lattice U_27.
Original entry on oeis.org
1, 0, 0, 2664, 101142, 1645056, 16045056, 110146176, 584713404, 2549741568, 9515943936, 31314087864, 92917622376, 252775586304, 638328674304, 1511740886400, 3387163161366, 7228598851584
Offset: 0
- R. Bacher and B. B. Venkov, Réseaux entiers unimodulaires sans racine en dimension 27 et 28, in Réseaux euclidiens, designs sphériques et formes modulaires, pp. 212-267, Enseignement Math., Geneva, 2001.
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Preface to 3rd ed. [alternative link]
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
-
th3^27-54*th3^19*delta8+216*th3^11*delta8^2 (th3 = A000122, delta8 = A002408).
-
terms = 18; QP = QPochhammer; th3 = EllipticTheta[3, 0, q]; delta8 = q*(QP[q]*(QP[q^4]/QP[q^2]))^8; s = th3^27 - 54*th3^19*delta8 + 216*th3^11*delta8^2 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 06 2017 *)
A002495
Theta series of 27-dimensional unimodular lattice with root system A_1 with no parity vector of norm 3.
Original entry on oeis.org
1, 0, 2, 2676, 101118, 1644784, 16044996, 110148864, 584716268, 2549726784, 9515920164, 31314134428, 92917720104, 252775518960, 638328487880, 1511740834560, 3387163064214, 7228599229760, 14768913424614, 29023937463900, 55107648867544, 101434033397472
Offset: 0
- R. Bacher and B. B. Venkov, Réseaux entiers unimodulaires sans racine en dimension 27 et 28, in Réseaux euclidiens, designs sphériques et formes modulaires, pp. 212-267, Enseignement Math., Geneva, 2001.
A034998
Expansion of Product (1+q^(2k-1))^(-8)*(1+q^(4k))^(-8), k=1..inf.
Original entry on oeis.org
1, -8, 36, -128, 402, -1152, 3064, -7680, 18351, -42112, 93300, -200448, 419150, -855552, 1708632, -3345408, 6432867, -12166272, 22659976, -41609856, 75404754, -134973184, 238825344, -418023936, 724242492
Offset: 0
A066234
Theta series of GH39, an extremal unimodular 39-dimensional lattice.
Original entry on oeis.org
1, 0, 0, 0, 23790, 1525056, 44420480, 768892800, 9093033300, 80361232640, 564369691392, 3290997166080, 16459430933400, 72362333294400, 285055580709120, 1021529151913088, 3371180795232510, 10348222578720000
Offset: 0
Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Dec 19 2001
Showing 1-8 of 8 results.
Comments