cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A045823 a(n) = sigma_3(2*n+1).

Original entry on oeis.org

1, 28, 126, 344, 757, 1332, 2198, 3528, 4914, 6860, 9632, 12168, 15751, 20440, 24390, 29792, 37296, 43344, 50654, 61544, 68922, 79508, 95382, 103824, 117993, 137592, 148878, 167832, 192080, 205380, 226982, 260408, 276948, 300764, 340704, 357912
Offset: 0

Views

Author

Keywords

Examples

			q + 28*q^3 + 126*q^5 + 344*q^7 + 757*q^9 + 1332*q^11 + 2198*q^13 + ...
		

Crossrefs

Equals A045819/2.
Bisection of A001158.

Programs

  • Magma
    [DivisorSigma(3, 2*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 02 2019
  • Maple
    A045823 := proc(n)
        numtheory[sigma][3](2*n+1) ;
    end proc:
    seq(A045823(n),n=0..30) ; # R. J. Mathar, Nov 25 2018
  • Mathematica
    DivisorSigma[3, Range[1, 75, 2]] (* Harvey P. Dale, Jan 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sigma(2 * n + 1, 3))} /* Michael Somos, Nov 29 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n *= 2; A = x * O(x^n); polcoeff( (eta(x^2 + A)^24 + eta(x + A)^16 * eta(x^4 + A)^8) / (2 * eta(x + A)^8 * eta(x^2 + A)^8), n))} /* Michael Somos, Nov 29 2007 */
    

Formula

Expansion of q^(-1) * ( E_4(q) - 9 * E_4(q^2) + 8 * E_4(q^4) ) / 240 in powers of q^2. - Michael Somos, Nov 29 2007
Expansion of q^(-1) * (eta(q^2)^24 + eta(q)^16 * eta(q^4)^8) / (2 * eta(q)^8 * eta(q^2)^8) in powers of q^2. - Michael Somos, Nov 29 2007
a(n) = b(2*n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = ((p^3)^(e+1) - 1) / (p^3 - 1) if p>2. - Michael Somos, Nov 29 2007
G.f.: (theta_3(q)^8 - theta_4(q)^8) / (32*q) = Sum_{n>=0} sigma_3(2*n+1)*q^(2*n). - Paul D. Hanna, Jun 02 2018
Sum_{k=0..n} a(k) ~ (15*zeta(4)/8) * n^4. - Amiram Eldar, Dec 12 2023

Extensions

More terms from Benoit Cloitre, Apr 12 2003

A092342 a(n) = sigma_3(3n+1).

Original entry on oeis.org

1, 73, 344, 1134, 2198, 4681, 6860, 11988, 15751, 25112, 29792, 44226, 50654, 73710, 79508, 109512, 117993, 160454, 167832, 219510, 226982, 299593, 300764, 390096, 389018, 500780, 493040, 620298, 619164, 779220, 756112, 934416, 912674, 1149823, 1092728
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Examples

			q + 73*q^4 + 344*q^7 + 1134*q^10 + 2198*q^13 + 4681*q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[3,3*Range[0,40]+1] (* Harvey P. Dale, Apr 22 2019 *)
  • PARI
    {a(n) = if(n<0, 0, sigma(3*n+1, 3))} /* Michael Somos, Aug 22 2007 */

Formula

Expansion of q^(-1/3) * c(q) * (c(q)^3 + b(q)^3 / 3) in powers of q where b(), c() are cubic AGM functions. - Michael Somos, Aug 22 2007
If b(3*n) = 0, b(3*n+1) = a(n), b(3*n+2) = A092343(n), then b(n) is multiplicative with b(3^e) = 0^e, b(p^e) = (p^(3*e+3) - 1) / (p^3 - 1) otherwise. - Michael Somos, Aug 22 2007
a(n) = A000731(n) + 81*A033690(n-1). - Michael Somos, Aug 22 2007
Sum_{k=0..n} a(k) ~ (20*zeta(4)/3) * n^4. - Amiram Eldar, Dec 12 2023

A092341 a(0)=1, a(n) = sigma_3(3n).

Original entry on oeis.org

1, 28, 252, 757, 2044, 3528, 6813, 9632, 16380, 20440, 31752, 37296, 55261, 61544, 86688, 95382, 131068, 137592, 183960, 192080, 257544, 260408, 335664, 340704, 442845, 441028, 553896, 551881, 703136, 682920, 858438, 834176, 1048572, 1008324, 1238328, 1213632
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Crossrefs

Trisection of A001158.

Programs

  • Mathematica
    Join[{1},DivisorSigma[3,3*Range[40]]] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n) = if(n < 1, 1, sigma(3*n, 3)); \\ Amiram Eldar, Dec 12 2023

Formula

Sum_{k=1..n} a(k) ~ (83*zeta(4)/12) * n^4. - Amiram Eldar, Dec 12 2023

A092343 a(n) = sigma_3(3n+2).

Original entry on oeis.org

9, 126, 585, 1332, 3096, 4914, 9198, 12168, 19782, 24390, 37449, 43344, 61740, 68922, 97236, 103824, 141759, 148878, 201240, 205380, 268128, 276948, 358722, 357912, 455886, 458208, 589806, 571788, 715572, 704970, 888264, 864360, 1061937, 1030302, 1285830
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Examples

			G.f. = 9 + 126*x + 585*x^2 + 1332*x^3 + 3096*x^4 + 4914*x^5 + 9198*x^6 + 12168*x^7 + ...
G.f. = 9*q^2 + 126*q^5 + 585*q^8 + 1332*q^11 + 3096*q^14 + 4914*q^17 + 9198*q^20 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[3,3n+2],{n,0,40}] (* Harvey P. Dale, Jul 02 2011 *)
  • PARI
    {a(n) = if( n<0, 0, sigma( 3*n + 2, 3))}; /* Michael Somos, May 30 2012 */

Formula

Expansion of q^(-2/3) * (a(q) * c(q))^2 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, May 30 2012
Convolution square of A144614. - Michael Somos, May 30 2012
Sum_{k=0..n} a(k) ~ (20*zeta(4)/3) * n^4. - Amiram Eldar, Dec 12 2023
Showing 1-4 of 4 results.