A046109 Number of lattice points (x,y) on the circumference of a circle of radius n with center at (0,0).
1, 4, 4, 4, 4, 12, 4, 4, 4, 4, 12, 4, 4, 12, 4, 12, 4, 12, 4, 4, 12, 4, 4, 4, 4, 20, 12, 4, 4, 12, 12, 4, 4, 4, 12, 12, 4, 12, 4, 12, 12, 12, 4, 4, 4, 12, 4, 4, 4, 4, 20, 12, 12, 12, 4, 12, 4, 4, 12, 4, 12, 12, 4, 4, 4, 36, 4, 4, 12, 4, 12, 4, 4, 12, 12, 20, 4, 4, 12, 4, 12, 4, 12, 4, 4, 36
Offset: 0
Examples
a(5) = 12 because the circumference of the circle with radius 5 will pass through the twelve points (5, 0), (4, 3), (3, 4), (0, 5), (-3, 4), (-4, 3), (-5, 0), (-4, -3), (-3, -4), (0, -5), (3, -4) and (4, -3). Alternatively, we can say the twelve Gaussian integers 5, 4 + 3i, ... , 4 - 3i all have absolute value of 5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Michael Gilleland, Some Self-Similar Integer Sequences
- Eric Weisstein's World of Mathematics, Circle Lattice Points
Crossrefs
Programs
-
Haskell
a046109 n = length [(x,y) | x <- [-n..n], y <- [-n..n], x^2 + y^2 == n^2] -- Reinhard Zumkeller, Jan 23 2012
-
Maple
N:= 1000: # to get a(0) to a(N) A:= Array(0..N): A[0]:= 1: for x from 1 to N do A[x]:= A[x]+4; for y from 1 to min(x-1,floor(sqrt(N^2-x^2))) do z:= x^2+y^2; if issqr(z) then t:= sqrt(z); A[t]:= A[t]+8; fi od od: seq(A[i],i=0..N); # Robert Israel, May 08 2015
-
Mathematica
Table[Length[Select[Flatten[Table[r + I i, {r, -n, n}, {i, -n, n}]], Abs[#] == n &]], {n, 0, 49}] (* Alonso del Arte, Feb 11 2012 *)
-
PARI
a(n)=if(n==0, return(1)); my(f=factor(n)); 4*prod(i=1,#f~, if(f[i,1]%4==1, 2*f[i,2]+1, 1)) \\ Charles R Greathouse IV, Feb 01 2017
-
PARI
a(n)=if(n==0, return(1)); t=0; for(x=1, n-1, y=n^2-x^2; if(issquare(y), t++)); return(4*t+4) \\ Arkadiusz Wesolowski, Nov 14 2017
-
Python
from sympy import factorint def a(n): r = 1 for p, e in factorint(n).items(): if p%4 == 1: r *= 2*e + 1 return 4*r if n > 0 else 0 # Orson R. L. Peters, Jan 31 2017
Formula
a(n) = 8*A046080(n) + 4 for n > 0.
a(n) = A004018(n^2).
From Jean-Christophe Hervé, Dec 01 2013: (Start)
a(A084647(k)) = 28.
a(A084648(k)) = 36.
a(A084649(k)) = 44. (End)
a(n) = 4 * Product_{i=1..k} (2*e_i + 1) for n > 0, given that p_i^e_i is the i-th factor of n with p_i = 1 mod 4. - Orson R. L. Peters, Jan 31 2017
a(n) = [x^(n^2)] theta_3(x)^2, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 20 2018
From Hugo Pfoertner, Sep 21 2023: (Start)
a(n) = 8*A063014(n) - 4 for n > 0.
a(n) = 4*A256452(n) for n > 0. (End)
Comments