cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046193 Indices of heptagonal numbers (A000566) which are also triangular numbers (A000217).

Original entry on oeis.org

1, 5, 221, 1513, 71065, 487085, 22882613, 156839761, 7368130225, 50501915861, 2372515049741, 16261460067385, 763942477886281, 5236139639782013, 245987105364332645, 1686020702549740705, 79207083984837225313, 542893430081376724901, 25504435056012222218045
Offset: 1

Views

Author

Keywords

Comments

From Ant King, Oct 19 2011: (Start)
lim_{n->infinity} a(2n+1)/a(2n) = (1/2)*(47+21*sqrt(5)).
lim_{n->infinity} a(2n)/a(2n-1) = (1/2)*(7+3*sqrt(5)).
(End)
From Raphie Frank, Nov 30 2012: (Start)
Where L_n is a Lucas number and F_n is Fibonacci number:
lim_{n->infinity} a(2n+1)/a(2n) = (1/2)*(L_8 + F_8*sqrt(5)),
lim_{n->infinity} a(2n)/a(2n-1) = (1/2)*(L_4 + F_4*sqrt(5)),
a(n) = L_1*a(n-1) + L_12*a(n-2) - L_12*a(n-3)- L_1*a(n-4) + L_1*a(n-5).
(End)
Values of n such that 2*n-1 and 10*n-1 are both perfect squares. - Colin Barker, Dec 03 2016

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^8] |IsSquare(2*n-1) and IsSquare(10*n-1)]; // Vincenzo Librandi, Dec 04 2016
  • Mathematica
    LinearRecurrence[{1,322,-322,-1,1},{1,5,221,1513,71065},17] (* Ant King, Oct 19 2011 *)
    Select[Range@240000000, IntegerQ@Sqrt[2 # - 1] && IntegerQ@Sqrt[10 # - 1] &] (* Vincenzo Librandi, Dec 04 2016 *)
  • PARI
    Vec(-x*(x^4+4*x^3-106*x^2+4*x+1)/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)) + O(x^50)) \\ Colin Barker, Jun 23 2015
    

Formula

For n odd, a(n+2) = 322*a(n+1) - a(n) - 96; for n even, a(n+1) = 161*a(n) - 48 + 36*sqrt(20*a(n)^2 - 12*a(n)+1). - Richard Choulet, Sep 29 2007, Oct 09 2007
From Ant King, Oct 19 2011: (Start)
a(n) = 322*a(n-2) - a(n-4) - 96.
a(n) = a(n-1) + 322*a(n-2) - 322*a(n-3) - a(n-4) + a(n-5).
a(n) = (1/20)*((sqrt(5)-(-1)^n)*(sqrt(5)+2)^(2n-1) + (sqrt(5)+(-1)^n)*(sqrt(5)-2)^(2n-1)+6).
a(n) = ceiling((1/20)*(sqrt(5)-(-1)^n)*(2+sqrt(5))^(2n-1)).
G.f.: x*(1 + 4*x - 106*x^2 + 4*x^3 + x^4)/((1-x)*(1-18*x+x^2)*(1+18*x+x^2)).
(End)