A046314 Numbers that are divisible by exactly 10 primes with multiplicity.
1024, 1536, 2304, 2560, 3456, 3584, 3840, 5184, 5376, 5632, 5760, 6400, 6656, 7776, 8064, 8448, 8640, 8704, 8960, 9600, 9728, 9984, 11664, 11776, 12096, 12544, 12672, 12960, 13056, 13440, 14080, 14400, 14592, 14848, 14976, 15872, 16000, 16640
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Reference
Crossrefs
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), this sequence (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Programs
-
Mathematica
Select[Range[5000], Plus @@ Last /@ FactorInteger[ # ] == 10 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *) Select[Range[17000],PrimeOmega[#]==10&] (* Harvey P. Dale, Jun 23 2018 *)
-
PARI
is(n)=bigomega(n)==10 \\ Charles R Greathouse IV, Mar 21 2013
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A046314(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,10))) return bisection(f,n,n) # Chai Wah Wu, Nov 03 2024
Formula
Product p_i^e_i with Sum e_i = 10.
a(n) ~ 362880n log n / (log log n)^9. - Charles R Greathouse IV, May 06 2013
Comments