cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046346 Composite numbers that are divisible by the sum of their prime factors (counted with multiplicity).

Original entry on oeis.org

4, 16, 27, 30, 60, 70, 72, 84, 105, 150, 180, 220, 231, 240, 256, 286, 288, 308, 378, 440, 450, 476, 528, 540, 560, 576, 588, 594, 624, 627, 646, 648, 650, 728, 800, 805, 840, 884, 897, 900, 945, 960, 1008, 1040, 1056, 1080, 1100, 1122, 1134, 1160, 1170, 1248
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

If m is in the sequence and d|m, then m^d is also a term. Note that this sequence contains all infinite subsequences of the form p^(p^k) for k>0, where p is a prime. - Amiram Eldar and Thomas Ordowski, Feb 06 2019
If one selects some composite k, k >= 8, and decomposes (k - sopfr(k)) into an additive partition having only prime parts, then those parts, when taken as a product with k, yield an element of this sequence. - Christopher Hohl, Jul 30 2019

Examples

			a(38) = 884 = 2 * 2 * 13 * 17 -> 2 + 2 + 13 + 17 = 34 so 884 / 34 = 26.
		

Crossrefs

Programs

  • MATLAB
    m=1;for u=2:1200 if and(isprime(u)==0,mod(u,sum(factor(u)))==0); sol(m)=u; m=m+1; end; end;sol % Marius A. Burtea, Jul 31 2019
    
  • Magma
    [k:k in [2..1200]| not IsPrime(k) and  k mod (&+[m[1]*m[2]: m in Factorization(k)]) eq 0]; // Marius A. Burtea, Jul 31 2019
    
  • Maple
    isA046346 := proc(n)
        if isprime(n) then
            false;
        elif modp(n,A001414(n)) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    for n from 2 to 1000 do
        if isA046346(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jan 12 2016
  • Mathematica
    Select[Range[2,1170],!PrimeQ[#]&&IntegerQ[#/Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, Jun 02 2013 *)
  • PARI
    sopfr(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,1]*f[k,2]);}
    lista(nn) = forcomposite(n=2, nn, if (! (n % sopfr(n)), print1(n, ", "));); \\ Michel Marcus, Jan 06 2016
    
  • Python
    from sympy import factorint
    def ok(n):
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and n % sum(p*f[p] for p in f) == 0
    print(list(filter(ok, range(1250)))) # Michael S. Branicky, Apr 16 2021

Extensions

Description corrected by Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 09 2002

A046348 Composite palindromes divisible by the sum of their prime factors (counted with multiplicity).

Original entry on oeis.org

4, 646, 2772, 5445, 8778, 30303, 48384, 50505, 54145, 63336, 77077, 117711, 219912, 234432, 239932, 255552, 272272, 294492, 535535, 585585, 636636, 717717, 825528, 888888, 951159, 999999, 1103011, 1112111, 1345431, 2248422, 2267622
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			a(2)=646 :  2*17*19 -> 2 + 17 + 19 = 38 and 646 / 38 = 17.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[If[!PrimeQ[n]&&Reverse[x=IntegerDigits[n]]==x&&IntegerQ[n/Total[Times@@@FactorInteger[n]]],AppendTo[t,n]],{n,4,2.5*10^6}]; t (* Jayanta Basu, Jun 04 2013 *)
    cpdQ[n_]:=CompositeQ[n]&&PalindromeQ[n]&&Divisible[n,Total[ Flatten[ Table[ #[[1]],#[[2]]]&/@FactorInteger[n]]]]; Select[Range[23*10^5],cpdQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 01 2018 *)
  • PARI
    See PARI link.

A308643 Odd squarefree composite numbers k, divisible by the sum of their prime factors, sopfr (A001414).

Original entry on oeis.org

105, 231, 627, 805, 897, 1581, 2967, 3055, 4543, 5487, 6461, 6745, 7881, 9717, 10707, 14231, 15015, 16377, 21091, 26331, 29607, 33495, 33901, 33915, 35905, 37411, 38843, 40587, 42211, 45885, 49335, 50505, 51051, 53295, 55581, 60297
Offset: 1

Views

Author

David James Sycamore, Jun 13 2019

Keywords

Comments

Every term has an odd number of prime divisors (A001221(k) is odd), since if not, sopfr(k) would be even, and so not divide k, which is odd.
Some Carmichael numbers appear in this sequence, the first of which is 3240392401.
From Robert Israel, Jul 05 2019: (Start)
Includes p*q*r if p and q are distinct odd primes and r=(p-1)*(q-1)-1 is prime. Dickson's conjecture implies that there are infinitely many such terms for each odd prime p. Thus for p=3, q is in A063908 (except 3), for p=5, q is in A156300 (except 2), and for p=7, q is in A153135 (except 2). (End)

Examples

			105=3*5*7; sum of prime factors = 15 and 105 = 7*15, so 105 is a term.
		

Crossrefs

Programs

  • Magma
    [k:k in [2*d+1: d in [1..35000]]|IsSquarefree(k) and not IsPrime(k) and k mod &+PrimeDivisors(k) eq 0]; // Marius A. Burtea, Jun 19 2019
  • Maple
    with(NumberTheory);
    N := 500;
    for n from 2 to N do
    S := PrimeFactors(n);
    X := add(S);
    if IsSquareFree(n) and not mod(n, 2) = 0 and not isprime(n) and mod(n, X) = 0 then print(n);
    end if:
    end do:
  • Mathematica
    aQ[n_] := Module[{f = FactorInteger[n]}, p=f[[;;,1]]; e=f[[;;,2]]; Length[e] > 1 && Max[e]==1 && Divisible[n, Plus@@(p^e)]]; Select[Range[1, 61000, 2], aQ] (* Amiram Eldar, Jul 04 2019 *)

A309003 Carmichael numbers divisible by the sum of their prime factors, sopfr (A001414).

Original entry on oeis.org

3240392401, 13577445505, 14446721521, 84127131361, 203340265921, 241420757761, 334797586201, 381334973041, 461912170321, 1838314142785, 3636869821201, 10285271821441, 17624045440981, 18773053896961, 20137015596061, 24811804945201, 26863480687681, 35598629998801
Offset: 1

Views

Author

David James Sycamore, Jul 05 2019

Keywords

Comments

Intersection of A002997 and A308643.
Intersection of A002997 and A036844.

Examples

			3240392401 = 29*37*41*73*1009, A001414(3240392401)=1189 = 29*41.
		

Crossrefs

Programs

  • PARI
    sopfr(f) = f[, 1]~*f[, 2];
    isCarmichael(n, f)= bittest(n, 0) && !for(i=1, #f~, (f[i, 2]==1 && n%(f[i, 1]-1)==1)||return) && (#f~>1);
    isok(n) = my(f=factor(n)); isCarmichael(n, f) && !(n % sopfr(f)); \\ Michel Marcus, Jul 07 2019
Showing 1-4 of 4 results.