A046665 Largest prime divisor of n - smallest prime divisor of n (a(1)=0).
0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 5, 2, 0, 0, 1, 0, 3, 4, 9, 0, 1, 0, 11, 0, 5, 0, 3, 0, 0, 8, 15, 2, 1, 0, 17, 10, 3, 0, 5, 0, 9, 2, 21, 0, 1, 0, 3, 14, 11, 0, 1, 6, 5, 16, 27, 0, 3, 0, 29, 4, 0, 8, 9, 0, 15, 20, 5, 0, 1, 0, 35, 2, 17, 4, 11, 0, 3, 0, 39, 0, 5, 12, 41, 26, 9, 0
Offset: 1
References
- Handbook of Number Theory, D. S. Mitrinovic et al., Kluwer, Section IV.1.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a046665 n = a006530 n - a020639 n -- Reinhard Zumkeller, Jul 03 2015
-
Maple
a:= n-> `if`(n=1, 0, (s-> max(s)-min(s))(numtheory[factorset](n))): seq(a(n), n=1..100); # Alois P. Heinz, Mar 07 2020
-
Mathematica
f[n_]:=Transpose[FactorInteger[n]][[1]];Table[Last[f[n]-First[f[n]]],{n,200}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *) lpd[n_]:=Module[{fi=FactorInteger[n]},fi[[-1,1]]-fi[[1,1]]]; Array[lpd,90] (* Harvey P. Dale, Dec 31 2017 *)
-
PARI
a(n)={if(n==1, 0, my(f=factor(n)[,1]); f[#f]-f[1])} \\ Andrew Howroyd, Mar 07 2020
Extensions
More terms from James Sellers
Comments