A046801 Number of divisors of 2^n-1.
1, 2, 2, 4, 2, 6, 2, 8, 4, 8, 4, 24, 2, 8, 8, 16, 2, 32, 2, 48, 12, 16, 4, 96, 8, 8, 8, 64, 8, 96, 2, 32, 16, 8, 16, 512, 4, 8, 16, 192, 4, 144, 8, 128, 64, 16, 8, 768, 4, 128, 32, 128, 8, 160, 64, 256, 16, 64, 4, 4608, 2, 8, 96, 128, 8, 384, 4, 128, 16, 512, 8, 8192, 8, 32, 128
Offset: 1
Keywords
Examples
a(120) = 73728 since 2^120-1 has that many divisors.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1206 (terms 1..500 from T. D. Noe)
Programs
-
Magma
[DivisorSigma(0, 2^n - 1): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
-
Maple
a:= n-> numtheory[tau](2^n-1): seq(a(n), n=1..80); # Alois P. Heinz, Aug 23 2021
-
Mathematica
Table[DivisorSigma[0, 2^n - 1], {n, 120}] (* Michael De Vlieger, Mar 26 2015 *)
-
PARI
a(n) = numdiv(2^n-1); \\ Michel Marcus, Dec 15 2013
-
Python
from sympy import divisor_count def A046801(n): return divisor_count((1<
Chai Wah Wu, Mar 13 2023
Extensions
Typo in example fixed by Reinhard Zumkeller, May 15 2010
a(0) removed by J. Lowell, Mar 26 2015
Comments