cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A361438 Triangle T(n,k), n >= 1, 1 <= k <= A046801(n), read by rows, where T(n,k) is k-th smallest divisor of 2^n-1.

Original entry on oeis.org

1, 1, 3, 1, 7, 1, 3, 5, 15, 1, 31, 1, 3, 7, 9, 21, 63, 1, 127, 1, 3, 5, 15, 17, 51, 85, 255, 1, 7, 73, 511, 1, 3, 11, 31, 33, 93, 341, 1023, 1, 23, 89, 2047, 1, 3, 5, 7, 9, 13, 15, 21, 35, 39, 45, 63, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095, 1, 8191, 1, 3, 43, 127, 129, 381, 5461, 16383
Offset: 1

Views

Author

Seiichi Manyama, Mar 12 2023

Keywords

Examples

			Triangle begins:
  1;
  1,   3;
  1,   7;
  1,   3,  5,   15;
  1,  31;
  1,   3,  7,    9, 21, 63;
  1, 127;
  1,   3,  5,   15, 17, 51,  85,  255;
  1,   7, 73,  511;
  1,   3, 11,   31, 33, 93, 341, 1023;
  1,  23, 89, 2047;
		

Crossrefs

Subsequence of A027750.
Cf. A000225, A049479 (2nd column), A075708 (row sums).
Cf. A374237 (analogous for 2^n + 1).

Programs

  • Maple
    T:= n-> sort([numtheory[divisors](2^n-1)[]])[]:
    seq(T(n), n=1..12);  # Alois P. Heinz, Oct 20 2024
  • Mathematica
    Divisors[2^Range[15] - 1] (* Paolo Xausa, Jul 02 2024 *)

A177710 Values of n where A046801(n) produces a record.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 20, 24, 36, 48, 60, 72, 84, 108, 120, 144, 168, 180, 288, 300, 360, 420, 540, 660, 720, 780, 840, 900, 1080
Offset: 1

Views

Author

J. Lowell, May 11 2010

Keywords

Examples

			240 doesn't qualify because 2^180-1 has 6291456 divisors but 2^240-1 has only 4718592 divisors.
		

Crossrefs

Cf. A046801.

Extensions

Corrected and extended by Alois P. Heinz, Sep 13 2011
a(24)-a(30) from Amiram Eldar, Sep 02 2019

A059499 a(n) = |{m : multiplicative order of 2 mod m = n}|.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 3, 16, 1, 5, 5, 8, 1, 24, 1, 38, 9, 11, 3, 68, 6, 5, 4, 54, 7, 79, 1, 16, 11, 5, 13, 462, 3, 5, 13, 140, 3, 123, 7, 110, 54, 11, 7, 664, 2, 114, 29, 118, 7, 124, 59, 188, 13, 55, 3, 4456, 1, 5, 82, 96, 5, 353, 3, 118, 11, 485, 7
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2001

Keywords

Comments

Also, number of primitive factors of 2^n - 1 (cf. A212953). - Max Alekseyev, May 03 2022
The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). See A002326.
a(n) is odd iff n is squarefree, A005117. - Thomas Ordowski, Jan 18 2014
The set S for which a(n) = |S| contains an odd number of prime powers p^k, where k > 0 and p == 3 (mod 4), iff n is squarefree and greater than one. - Isaac Saffold, Dec 28 2019

Examples

			a(3) = |{7}| = 1, a(4) = |{5,15}| = 2, a(6) = |{9,21,63}| = 3.
		

Crossrefs

Column k=2 of A212957.
Primitive factors of b^n - 1: this sequence (b=2), A059885 (b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(2^d-1), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 31 2012
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 2^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 71} ] (* Jean-François Alcover, Dec 12 2012 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(2^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{d|n} A008683(n/d) * A046801(d) = Sum_{d|A007947(n)} A008683(d) * A046801(n/d). - Max Alekseyev, May 03 2022
a(n) = 1 iff 2^n-1 is noncomposite. a(prime(n)) = 2^A088863(n)-1. - Thomas Ordowski, Jan 16 2014

Extensions

More terms from John W. Layman, Mar 22 2002
More terms from Alois P. Heinz, May 31 2012

A046798 Number of divisors of 2^n + 1.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 4, 4, 2, 8, 6, 4, 4, 4, 8, 12, 2, 4, 16, 4, 4, 12, 8, 4, 8, 16, 16, 20, 4, 8, 48, 4, 4, 24, 16, 32, 16, 8, 16, 12, 4, 8, 64, 4, 8, 64, 32, 8, 8, 8, 64, 48, 8, 8, 64, 48, 8, 24, 8, 16, 16, 4, 32, 64, 4, 64, 64, 8, 12, 24, 96, 8, 32, 8, 32, 96, 16, 64, 768, 4, 8, 192, 32, 64
Offset: 0

Views

Author

Keywords

Comments

a(n) is odd iff n = 3, as a consequence of the Catalan-Mihăilescu theorem. - Bernard Schott, Oct 05 2021

Examples

			a(7)=4, because 2^7 + 1 = 129 has 4 divisors.
		

Crossrefs

Programs

Formula

a(n) = A000005(A000051(n)). - Michel Marcus, Mar 18 2017

A070528 Number of divisors of 10^n-1 (999...999 with n digits).

Original entry on oeis.org

3, 6, 8, 12, 12, 64, 12, 48, 20, 48, 12, 256, 24, 48, 128, 192, 12, 640, 6, 384, 256, 288, 6, 2048, 96, 192, 96, 768, 96, 16384, 24, 6144, 128, 192, 384, 5120, 24, 24, 128, 6144, 48, 49152, 48, 4608, 1280, 192, 12, 16384, 48, 3072, 512, 1536, 48, 12288, 768
Offset: 1

Views

Author

Henry Bottomley, May 02 2002

Keywords

Examples

			a(7)=12 since the divisors of 9999999 are 1, 3, 9, 239, 717, 2151, 4649, 13947, 41841, 1111111, 3333333, 9999999.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,#]&/@(10^Range[60]-1) (* Harvey P. Dale, Jan 14 2011 *)
    Table[DivisorSigma[0, 10^n - 1], {n, 60}] (* T. D. Noe, Aug 18 2011 *)
  • PARI
    a(n) = numdiv(10^n - 1); \\ Michel Marcus, Sep 08 2015

Formula

a(n) = A000005(A002283(n)).
a(n) = Sum_{d|n} A059892(d).
a(n) = A070529(n)*(A007949(n)+3)/(A007949(n)+1).

Extensions

Terms to a(280) in b-file from Hans Havermann, Aug 19 2011
a(281)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, May 04 2022

A366709 Number of divisors of 12^n-1.

Original entry on oeis.org

2, 4, 4, 16, 4, 32, 8, 64, 16, 16, 12, 256, 8, 64, 64, 512, 8, 512, 4, 192, 32, 48, 16, 4096, 16, 192, 64, 1024, 32, 8192, 32, 2048, 192, 64, 512, 16384, 8, 64, 128, 12288, 16, 12288, 32, 3072, 4096, 256, 8, 262144, 32, 1024, 64, 6144, 128, 65536, 192, 8192
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Examples

			a(3)=4 because 12^3-1 has divisors {1, 11, 157, 1727}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](12^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 12^Range[100]-1]
  • PARI
    a(n) = numdiv(12^n-1);

Formula

a(n) = sigma0(12^n-1) = A000005(A024140(n)).

A366683 Number of divisors of 11^n-1.

Original entry on oeis.org

4, 16, 16, 40, 12, 192, 16, 96, 32, 96, 16, 1920, 16, 128, 96, 448, 8, 1024, 8, 480, 768, 1024, 32, 18432, 128, 512, 64, 2560, 16, 9216, 32, 2048, 512, 256, 192, 20480, 64, 512, 4096, 4608, 512, 36864, 16, 10240, 384, 2048, 32, 1376256, 128, 4096, 512, 2560
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Examples

			a(3)=16 because 11^3-1 has divisors {1, 2, 5, 7, 10, 14, 19, 35, 38, 70, 95, 133, 190, 266, 665, 1330}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](11^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 11^Range[100]-1]
  • PARI
    a(n) = numdiv(11^n-1);

Formula

a(n) = sigma0(11^n-1) = A000005(A024127(n)).

A246600 Number of divisors d of n with property that the binary representation of d can be obtained from the binary representation of n by changing any number of 1's to 0's.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 2, 6, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 4, 2
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2014

Keywords

Comments

Equivalently, the number of divisors d of n such that the bitwise OR of n and d is equal to n. - Chai Wah Wu, Sep 06 2014
Equivalently, the number of divisors d of n such that the bitwise AND of n and d is equal to d. - Amiram Eldar, Dec 15 2022
The sums of the first 10^k terms for k = 1, 2, ..., are 16, 224, 2580, 26920, 273407, 2745100, 27440305, 274127749, 2738936912, 27373288534, 273631055291, 2735755647065, ... . Conjecture: The asymptotic mean of this sequence is 1 + Sum_{k>=1} 1/(k*2^A000120(k)) = 2.7351180693... . - Amiram Eldar, Apr 07 2023

Examples

			12 = 1100_2; only the divisors 4 = 0100_2 and 12 = 1100_2 satisfy the condition, so(12)=2.
15 = 1111_2; all divisors 1,3,5,15 satisfy the condition, so a(15)=4.
		

Crossrefs

Programs

  • Maple
    A246600:=proc(n)
        local a, d, s, t, i, sw;
        a:=0;
        s:=convert(n, base, 2);
        for d in numtheory[divisors](n) do
            sw:= false;
            t:=convert(d, base, 2);
            for i from 1 to nops(t) do
                if t[i]>s[i] then
                    sw:= true;
                fi;
            od:
            if not sw then
                a:=a+1;
            fi;
        od;
        a;
    end;
    seq(A246600(n), n=1..100);
  • Mathematica
    a[n_] := DivisorSum[n, Boole[BitOr[#, n] == n]&]; Array[a, 100] (* Jean-François Alcover, Dec 02 2015, adapted from PARI *)
  • PARI
    a(n)=sumdiv(n,d,bitor(d,n)==n) \\ Charles R Greathouse IV, Sep 29 2014
  • Python
    from sympy import divisors
    def A246600(n):
        return sum(1 for d in divisors(n) if n|d == n)
    # Chai Wah Wu, Sep 06 2014
    

Formula

a(2^i) = 1.
a(odd prime) = 2.
a(n) <= 2^wt(n)-1, where wt(n) = A000120(n).
a(n) = Sum_{d|n} A047999(n,d), where A047999(n,d) = binomial(n,d) mod 2. - Ridouane Oudra, May 03 2019
From Amiram Eldar, Dec 15 2022: (Start)
a(2*n) = a(n), and therefore a(m*2^k) = a(m) for m odd and k>=0.
a(2^n-1) = A000005(2^n-1) = A046801(n). (End)

A085021 Number of prime factors of cyclotomic(n,2), which is A019320(n), the value of the n-th cyclotomic polynomial evaluated at x=2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A046051, the number of prime factors of Mersenne number 2^n-1.
The number of prime factors in the primitive part of 2^n-1. - T. D. Noe, Jul 19 2008

Examples

			a(11) = 2 because cyclotomic(11,2) = 2047, which has two factors: 23 and 89.
		

Crossrefs

omega(Phi(n,x)): this sequence (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Join[{0}, Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 2]]][[2]], {n, 2, 100}]]
  • PARI
    a(n) = #factor(polcyclo(n, 2))~; \\ Michel Marcus, Mar 06 2015

A366621 Number of divisors of 6^n-1.

Original entry on oeis.org

2, 4, 4, 8, 6, 16, 4, 16, 16, 48, 8, 128, 8, 48, 48, 64, 32, 128, 8, 384, 16, 32, 32, 512, 32, 128, 64, 384, 4, 1536, 8, 512, 64, 256, 96, 8192, 64, 64, 64, 3072, 8, 768, 32, 512, 1536, 256, 16, 8192, 32, 512, 512, 2048, 16, 2048, 96, 12288, 128, 64, 16
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=8 because 6^4-1 has divisors {1, 5, 7, 35, 37, 185, 259, 1295}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](6^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 6^Range[100]-1]
  • PARI
    a(n) = numdiv(6^n-1);

Formula

a(n) = sigma0(6^n-1) = A000005(A024062(n)).
Showing 1-10 of 28 results. Next