cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046902 Clark's triangle: left border = 0 1 1 1..., right border = multiples of 6; other entries = sum of 2 entries above.

Original entry on oeis.org

0, 1, 6, 1, 7, 12, 1, 8, 19, 18, 1, 9, 27, 37, 24, 1, 10, 36, 64, 61, 30, 1, 11, 46, 100, 125, 91, 36, 1, 12, 57, 146, 225, 216, 127, 42, 1, 13, 69, 203, 371, 441, 343, 169, 48, 1, 14, 82, 272, 574, 812, 784, 512, 217, 54, 1, 15, 96, 354, 846, 1386, 1596, 1296, 729, 271, 60
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
  0;
  1,  6;
  1,  7, 12;
  1,  8, 19,  18;
  1,  9, 27,  37,  24;
  1, 10, 36,  64,  61,  30;
  1, 11, 46, 100, 125,  91,  36;
  1, 12, 57, 146, 225, 216, 127,  42;
  1, 13, 69, 203, 371, 441, 343, 169,  48;
		

References

  • J. E. Clark, Clark's triangle, Math. Student, 26 (No. 2, 1978), p. 4.

Crossrefs

Cf. A100206 (row sums), A185080 (central terms).

Programs

  • Haskell
    a046902 n k = a046902_tabl !! n !! k
    a046902_row n = a046902_tabl !! n
    a046902_tabl = [0] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [6])) [1,6]
    -- Reinhard Zumkeller, Dec 26 2012
    
  • Magma
    A046902:= func< n,k | n eq 0 select 0 else 6*Binomial(n, k-1) + Binomial(n-1, k) >;
    [A046902(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 01 2024
    
  • Mathematica
    Join[{0},Flatten[Table[6*Binomial[n,k-1]+Binomial[n-1,k],{n,10},{k,0,n}]]] (* Harvey P. Dale, Nov 04 2012 *)
  • SageMath
    def A046902(n,k): return 6*binomial(n, k-1) + binomial(n-1, k) - int(n==0)
    flatten([[A046902(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 01 2024

Formula

T(2*n, n) = A185080(n), for n >= 1.
Sum_{k=0..n} T(n, k) = A100206(n) (row sums).
T(n, k) = 6*binomial(n, k-1) + binomial(n-1, k), with T(0, 0) = 0. - Max Alekseyev, Nov 06 2005
From G. C. Greubel, Apr 01 2024: (Start)
T(n, n) = A008588(n).
T(n, n-1) = A003215(n-1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = 6*(-1)^n - 6*[n=0] + [n=1].
Sum_{k=0..floor(n/2)} T(n-k, k) = 7*Fibonacci(n) - 3*(1 - (-1)^n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n), where b(n) = b(n-12) is the repeating pattern {0, 1, -5, -6, 5, 11, 0, -11, -5, 6, 5, -1}. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
More terms from Max Alekseyev, May 12 2005