A100206 Row sums of Clark's triangle A046902.
0, 7, 20, 46, 98, 202, 410, 826, 1658, 3322, 6650, 13306, 26618, 53242, 106490, 212986, 425978, 851962, 1703930, 3407866, 6815738, 13631482, 27262970, 54525946, 109051898, 218103802, 436207610, 872415226, 1744830458, 3489660922
Offset: 0
Examples
a(0) = 0. a(1) = 6 + 1. a(2) = 12 + 7 + 1. a(3) = 18 + 19 + 8 + 1. a(4) = 24 + 37 + 27 + 9 + 1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Clark's Triangle.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Cf. A046902.
Programs
-
Magma
[0] cat [13*2^(n-1)-6: n in [1..40]]; // Vincenzo Librandi, May 29 2016
-
Mathematica
Join[{0}, Table[13 2^(n-1) - 6, {n, 1, 40}]] (* Vincenzo Librandi, May 29 2016 *) LinearRecurrence[{3,-2},{0,7,20},30] (* Harvey P. Dale, Jul 07 2024 *)
-
PARI
{a(n) = if(n,13*2^(n-1)-6,0)} \\ Max Alekseyev, May 12 2005
-
SageMath
[(13*2^n - 12 - int(n==0))/2 for n in range(41)] # G. C. Greubel, Apr 02 2024
Formula
a(0)=0; for n>0, a(n) = 13*2^(n-1) - 6. - Max Alekseyev, May 12 2005
From Chai Wah Wu, May 28 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: x*(7 - x)/((1 - x )*(1 - 2*x)). (End)
E.g.f.: (1/2)*(13*exp(2*x) - 12*exp(x) - 1). - G. C. Greubel, Apr 02 2024
Extensions
More terms from Max Alekseyev, May 12 2005
Comments