cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046913 Sum of divisors of n not congruent to 0 mod 3.

Original entry on oeis.org

1, 3, 1, 7, 6, 3, 8, 15, 1, 18, 12, 7, 14, 24, 6, 31, 18, 3, 20, 42, 8, 36, 24, 15, 31, 42, 1, 56, 30, 18, 32, 63, 12, 54, 48, 7, 38, 60, 14, 90, 42, 24, 44, 84, 6, 72, 48, 31, 57, 93, 18, 98, 54, 3, 72, 120, 20, 90, 60, 42, 62, 96, 8, 127, 84, 36, 68, 126
Offset: 1

Views

Author

Keywords

Examples

			Divisors of 12 are 1 2 3 4 6 12 and discarding 3 6 and 12 we get a(12) = 1 + 2 + 4 = 7.
x + 3*x^2 + x^3 + 7*x^4 + 6*x^5 + 3*x^6 + 8*x^7 + 15*x^8 + x^9 + 18*x^10 + ...
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(3*k)-3*SumOfDivisors(k):k in [1..70]]; // Marius A. Burtea, Jun 01 2019
  • Mathematica
    Table[DivisorSigma[1, 3*w]-3*DivisorSigma[1, w], {w, 1, 256}]
    DivisorSum[#1, # &, Mod[#, 3] != 0 &] & /@ Range[68] (* Jayanta Basu, Jun 30 2013 *)
    f[p_, e_] := If[p == 3, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    {a(n) = if( n<1, 0, sigma(3*n) - 3 * sigma(n))} /* Michael Somos, Jul 19 2004 */
    
  • PARI
    a(n) = sigma(n \ 3^valuation(n, 3)) \\ David A. Corneth, Jun 01 2019
    

Formula

Multiplicative with a(3^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) for p<>3. - Vladeta Jovovic, Sep 11 2002
G.f.: Sum_{k>0} x^k*(1+2*x^k+2*x^(3*k)+x^(4*k))/(1-x^(3*k))^2. - Vladeta Jovovic, Dec 18 2002
a(n) = A000203(3n)-3*A000203(n). - Labos Elemer, Aug 14 2003
Inverse Mobius transform of A091684. - Gary W. Adamson, Jul 03 2008
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/3^(s-1)). - R. J. Mathar, Feb 10 2011
G.f. A(x) satisfies: 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w)= u^2 + 9 * v^2 + 16 * w^2 - 6 * u*v + 4 * u*w - 24 * v*w - v + w. - Michael Somos, Jul 19 2004
L.g.f.: log(Product_{k>=1} (1 - x^(3*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
a(n) = A002324(n) + 3*Sum_{j=1, n-1} A002324(j)*A002324(n-j). See Farkas and Guerzhoy links. - Michel Marcus, Jun 01 2019
a(3*n) = a(n). - David A. Corneth, Jun 01 2019
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 18. - Vaclav Kotesovec, Sep 17 2020