A046913 Sum of divisors of n not congruent to 0 mod 3.
1, 3, 1, 7, 6, 3, 8, 15, 1, 18, 12, 7, 14, 24, 6, 31, 18, 3, 20, 42, 8, 36, 24, 15, 31, 42, 1, 56, 30, 18, 32, 63, 12, 54, 48, 7, 38, 60, 14, 90, 42, 24, 44, 84, 6, 72, 48, 31, 57, 93, 18, 98, 54, 3, 72, 120, 20, 90, 60, 42, 62, 96, 8, 127, 84, 36, 68, 126
Offset: 1
Examples
Divisors of 12 are 1 2 3 4 6 12 and discarding 3 6 and 12 we get a(12) = 1 + 2 + 4 = 7. x + 3*x^2 + x^3 + 7*x^4 + 6*x^5 + 3*x^6 + 8*x^7 + 15*x^8 + x^9 + 18*x^10 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Hershel M. Farkas, On an arithmetical function, Ramanujan J., Vol. 8, No. 3 (2004), pp. 309-315.
- Pavel Guerzhoy and Ka Lun Wong, Farkas' identities with quartic characters, The Ramanujan Journal (2020), preprint, arXiv:1905.06506 [math.NT], 2019.
Programs
-
Magma
[SumOfDivisors(3*k)-3*SumOfDivisors(k):k in [1..70]]; // Marius A. Burtea, Jun 01 2019
-
Mathematica
Table[DivisorSigma[1, 3*w]-3*DivisorSigma[1, w], {w, 1, 256}] DivisorSum[#1, # &, Mod[#, 3] != 0 &] & /@ Range[68] (* Jayanta Basu, Jun 30 2013 *) f[p_, e_] := If[p == 3, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
-
PARI
{a(n) = if( n<1, 0, sigma(3*n) - 3 * sigma(n))} /* Michael Somos, Jul 19 2004 */
-
PARI
a(n) = sigma(n \ 3^valuation(n, 3)) \\ David A. Corneth, Jun 01 2019
Formula
Multiplicative with a(3^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) for p<>3. - Vladeta Jovovic, Sep 11 2002
G.f.: Sum_{k>0} x^k*(1+2*x^k+2*x^(3*k)+x^(4*k))/(1-x^(3*k))^2. - Vladeta Jovovic, Dec 18 2002
Inverse Mobius transform of A091684. - Gary W. Adamson, Jul 03 2008
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/3^(s-1)). - R. J. Mathar, Feb 10 2011
G.f. A(x) satisfies: 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w)= u^2 + 9 * v^2 + 16 * w^2 - 6 * u*v + 4 * u*w - 24 * v*w - v + w. - Michael Somos, Jul 19 2004
L.g.f.: log(Product_{k>=1} (1 - x^(3*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
a(n) = A002324(n) + 3*Sum_{j=1, n-1} A002324(j)*A002324(n-j). See Farkas and Guerzhoy links. - Michel Marcus, Jun 01 2019
a(3*n) = a(n). - David A. Corneth, Jun 01 2019
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 18. - Vaclav Kotesovec, Sep 17 2020