A046978 Numerators of Taylor series for exp(x)*sin(x).
0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0
Offset: 0
Examples
G.f. = x + x^2 + x^3 - x^5 - x^6 - x^7 + x^9 + x^10 + x^11 - x^13 - x^14 - ... 1*x + 1*x^2 + (1/3)*x^3 - (1/30)*x^5 - (1/90)*x^6 - (1/630)*x^7 + (1/22680)*x^9 + (1/113400)*x^10 + ...
References
- G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1).
- C. Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
Crossrefs
Cf. A046979.
Programs
-
Maple
A046978 := n -> `if`(n mod 4 = 0,0,(-1)^iquo(n,4)): # Peter Luschny, Aug 21 2011
-
Mathematica
a = -((1 + I)/Sqrt[2]) + Sqrt[2]; b = (1 + I)/Sqrt[2]; Table[ Round[(a^n - b^n)/(a - b)], {n, 0, 200}] (* Artur Jasinski, Oct 06 2008 *) Table[Sign[Cos[Pi*(n-2)/4]],{n,0,100}] (* Wesley Ivan Hurt, Oct 10 2013 *) LinearRecurrence[{0,0,0,-1},{0,1,1,1},120] (* or *) PadRight[{},120,{0,1,1,1,0,-1,-1,-1}] (* Harvey P. Dale, Mar 17 2017 *)
-
PARI
{a(n) = (n%4 > 0) * (-1)^(n\4)}; /* Michael Somos, Jul 16 2006 */
Formula
Euler transform of length 8 sequence [1, 0, -1, -1, 0, 0, 0, 1]. - Michael Somos, Jul 16 2006
G.f.: x * (1 + x + x^2) / (1 + x^4) = x * (1 - x^3) * (1 - x^4) / ((1 - x) * (1 - x^8)). a(-n) = a(n + 4) = -a(n). - Michael Somos, Jul 16 2006
a(n) = round((b^n - c^n)/(b - c)) where b = sqrt(2)-((1+i)/sqrt(2)), c = (1+i)/sqrt(2). - Artur Jasinski, Oct 06 2008
a(n) = sign(cos(Pi*(n-2)/4)). - Wesley Ivan Hurt, Oct 02 2013
Comments