cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A155585 a(n) = 2^n*E(n, 1) where E(n, x) are the Euler polynomials.

Original entry on oeis.org

1, 1, 0, -2, 0, 16, 0, -272, 0, 7936, 0, -353792, 0, 22368256, 0, -1903757312, 0, 209865342976, 0, -29088885112832, 0, 4951498053124096, 0, -1015423886506852352, 0, 246921480190207983616, 0, -70251601603943959887872, 0, 23119184187809597841473536, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2009

Keywords

Comments

Previous name was: a(n) = Sum_{k=0..n-1} (-1)^(k)*C(n-1,k)*a(n-1-k)*a(k) for n>0 with a(0)=1.
Factorials have a similar recurrence: f(n) = Sum_{k=0..n-1} C(n-1,k)*f(n-1-k)*f(k), n > 0.
Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times Sum_{k=0..n} binomial(n,k)*k^q, then A155585(x) = Sum_{k=0..x-1} T(x,k)*(-1)^k. See Mathematica code below. - John M. Campbell, Nov 16 2011
For the difference table and the relation to the Seidel triangle see A239005. - Paul Curtz, Mar 06 2014
From Tom Copeland, Sep 29 2015: (Start)
Let z(t) = 2/(e^(2t)+1) = 1 + tanh(-t) = e.g.f.(-t) for this sequence = 1 - t + 2*t^3/3! - 16*t^5/5! + ... .
dlog(z(t))/dt = -z(-t), so the raising operators that generate Appell polynomials associated with this sequence, A081733, and its reciprocal, A119468, contain z(-d/dx) = e.g.f.(d/dx) as the differential operator component.
dz(t)/dt = z*(z-2), so the assorted relations to a Ricatti equation, the Eulerian numbers A008292, and the Bernoulli numbers in the Rzadkowski link hold.
From Michael Somos's formula below (drawing on the Edwards link), y(t,1)=1 and x(t,1) = (1-e^(2t))/(1+e^(2t)), giving z(t) = 1 + x(t,1). Compare this to the formulas in my list in A008292 (Sep 14 2014) with a=1 and b=-1,
A) A(t,1,-1) = A(t) = -x(t,1) = (e^(2t)-1)/(1+e^(2t)) = tanh(t) = t + -2*t^3/3! + 16*t^5/5! + -272*t^7/7! + ... = e.g.f.(t) - 1 (see A000182 and A000111)
B) Ainv(t) = log((1+t)/(1-t))/2 = tanh^(-1)(t) = t + t^3/3 + t^5/5 + ..., the compositional inverse of A(t)
C) dA/dt = (1-A^2), relating A(t) to a Weierstrass elliptic function
D) ((1-t^2)d/dt)^n t evaluated at t=0, a generator for the sequence A(t)
F) FGL(x,y)= (x+y)/(1+xy) = A(Ainv(x) + Ainv(y)), a related formal group law corresponding to the Lorentz FGL (Lorentz transformation--addition of parallel velocities in special relativity) and the Atiyah-Singer signature and the elliptic curve (1-t^2)*s = t^3 in Tate coordinates according to the Lenart and Zainoulline link and the Buchstaber and Bunkova link (pp. 35-37) in A008292.
A133437 maps the reciprocal odd natural numbers through the refined faces of associahedra to a(n).
A145271 links the differential relations to the geometry of flow maps, vector fields, and thereby formal group laws. See Mathworld for links of tanh to other geometries and statistics.
Since the a(n) are related to normalized values of the Bernoulli numbers and the Riemann zeta and Dirichlet eta functions, there are links to Witten's work on volumes of manifolds in two-dimensional quantum gauge theories and the Kervaire-Milnor formula for homotopy groups of hyperspheres (see my link below).
See A101343, A111593 and A059419 for this and the related generator (1 + t^2) d/dt and associated polynomials. (End)
With the exception of the first term (1), entries are the alternating sums of the rows of the Eulerian triangle, A008292. - Gregory Gerard Wojnar, Sep 29 2018

Examples

			E.g.f.: 1 + x - 2*x^3/3! + 16*x^5/5! - 272*x^7/7! + 7936*x^9/9! -+ ... = exp(x)/cosh(x).
O.g.f.: 1 + x - 2*x^3 + 16*x^5 - 272*x^7 + 7936*x^9 - 353792*x^11 +- ...
O.g.f.: 1 + x/(1+2*x) + 2!*x^2/((1+2*x)*(1+4*x)) + 3!*x^3/((1+2*x)*(1+4*x)*(1+6*x)) + ...
		

Crossrefs

Equals row sums of A119879. - Johannes W. Meijer, Apr 20 2011
(-1)^n*a(n) are the alternating row sums of A123125. - Wolfdieter Lang, Jul 12 2017

Programs

  • Maple
    A155585 := n -> 2^n*euler(n, 1): # Peter Luschny, Jan 26 2009
    a := proc(n) option remember; `if`(n::even, 0^n, -(-1)^n - add((-1)^k*binomial(n,k) *a(n-k), k = 1..n-1)) end: # Peter Luschny, Jun 01 2016
    # Or via the recurrence of the Fubini polynomials:
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
    a := n -> (-2)^n*subs(x = -1/2, F(n)):
    seq(a(n), n = 0..30); # Peter Luschny, May 21 2021
  • Mathematica
    a[m_] := Sum[(-2)^(m - k) k! StirlingS2[m, k], {k, 0, m}] (* Peter Luschny, Apr 29 2009 *)
    poly[q_] :=  2^(q-n)/n*FunctionExpand[Sum[Binomial[n, k]*k^q, {k, 0, n}]]; T[q_, r_] :=  First[Take[CoefficientList[poly[q], n], {r+1, r+1}]]; Table[Sum[T[x, k]*(-1)^k, {k, 0, x-1}], {x, 1, 16}] (* John M. Campbell, Nov 16 2011 *)
    f[n_] := (-1)^n 2^(n+1) PolyLog[-n, -1]; f[0] = -f[0]; Array[f, 27, 0] (* Robert G. Wilson v, Jun 28 2012 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,(-1)^(k)*binomial(n-1,k)*a(n-1-k)*a(k)))
    
  • PARI
    a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(X)/cosh(X),n)
    
  • PARI
    a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1+2*k*x+x*O(x^n))),n) \\ Paul D. Hanna, Jul 20 2011
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( 1 + sinh(x + A) / cosh(x + A), n))} /* Michael Somos, Jan 16 2012 */
    
  • PARI
    a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,intformal(subst(A,x,-x)+x*O(x^n))^k/k!));n!*polcoeff(A,n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 25 2013
    
  • Python
    from sympy import bernoulli
    def A155585(n): return (((2<<(m:=n+1))-2)*bernoulli(m)<>1) if n&1 else (0 if n else 1) # Chai Wah Wu, Apr 14 2023
  • Sage
    def A155585(n) :
        if n == 0 : return 1
        return add(add((-1)^(j+1)*binomial(n+1,k-j)*j^n for j in (0..k)) for k in (1..n))
    [A155585(n) for n in (0..26)] # Peter Luschny, Jul 23 2012
    
  • Sage
    def A155585_list(n): # Akiyama-Tanigawa algorithm
        A = [0]*(n+1); R = []
        for m in range(n+1) :
            d = divmod(m+3, 4)
            A[m] = 0 if d[1] == 0 else (-1)^d[0]/2^(m//2)
            for j in range(m, 0, -1) :
                A[j - 1] = j * (A[j - 1] - A[j])
            R.append(A[0])
        return R
    A155585_list(30) # Peter Luschny, Mar 09 2014
    

Formula

E.g.f.: exp(x)*sech(x) = exp(x)/cosh(x). (See A009006.) - Paul Barry, Mar 15 2006
Sequence of absolute values is A009006 (e.g.f. 1+tan(x)).
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + 2*k*x). - Paul D. Hanna, Jul 20 2011
a(n) = 2^n*E_{n}(1) where E_{n}(x) are the Euler polynomials. - Peter Luschny, Jan 26 2009
a(n) = EL_{n}(-1) where EL_{n}(x) are the Eulerian polynomials. - Peter Luschny, Aug 03 2010
a(n+1) = (4^n-2^n)*B_n(1)/n, where B_{n}(x) are the Bernoulli polynomials (B_n(1) = B_n for n <> 1). - Peter Luschny, Apr 22 2009
G.f.: 1/(1-x+x^2/(1-x+4*x^2/(1-x+9*x^2/(1-x+16*x^2/(1-...))))) (continued fraction). - Paul Barry, Mar 30 2010
G.f.: -log(x/(exp(x)-1))/x = Sum_{n>=0} a(n)*x^n/(2^(n+1)*(2^(n+1)-1)*n!). - Vladimir Kruchinin, Nov 05 2011
E.g.f.: exp(x)/cosh(x) = 2/(1+exp(-2*x)) = 2/(G(0) + 1); G(k) = 1 - 2*x/(2*k + 1 - x*(2*k+1)/(x - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2011
E.g.f. is x(t,1) + y(t,1) where x(t,a) and y(t,a) satisfy y(t,a)^2 = (a^2 - x(t,a)^2) / (1 - a^2 * x(t,a)^2) and dx(t,a) / dt = y(t,a) * (1 - a * x(t,a)^2) and are the elliptic functions of Edwards. - Michael Somos, Jan 16 2012
E.g.f.: 1/(1 - x/(1+x/(1 - x/(3+x/(1 - x/(5+x/(1 - x/(7+x/(1 - x/(9+x/(1 +...))))))))))), a continued fraction. - Paul D. Hanna, Feb 11 2012
E.g.f. satisfies: A(x) = Sum_{n>=0} Integral( A(-x) dx )^n / n!. - Paul D. Hanna, Nov 25 2013
a(n) = -2^(n+1)*Li_{-n}(-1). - Peter Luschny, Jun 28 2012
a(n) = Sum_{k=1..n} Sum_{j=0..k} (-1)^(j+1)*binomial(n+1,k-j)*j^n for n > 0. - Peter Luschny, Jul 23 2012
From Sergei N. Gladkovskii, Oct 25 2012 to Dec 16 2013: (Start)
Continued fractions:
G.f.: 1 + x/T(0) where T(k) = 1 + (k+1)*(k+2)*x^2/T(k+1).
E.g.f.: exp(x)/cosh(x) = 1 + x/S(0) where S(k) = (2*k+1) + x^2/S(k+1).
E.g.f.: 1 + x/(U(0)+x) where U(k) = 4*k+1 - x/(1 + x/(4*k+3 - x/(1 + x/U(k+1)))).
E.g.f.: 1 + tanh(x) = 4*x/(G(0)+2*x) where G(k) = 1 - (k+1)/(1 - 2*x/(2*x + (k+1)^2/G(k+1)));
G.f.: 1 + x/G(0) where G(k) = 1 + 2*x^2*(2*k+1)^2 - x^4*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1) (due to Stieltjes).
E.g.f.: 1 + x/(G(0) + x) where G(k) = 1 - 2*x/(1 + (k+1)/G(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*(k+1)/( 1 - x*(k+1)/Q(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*k^2 + x/(1 - x*(k+1)^2/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - 2*x + x*(k+1)/(1-x*(k+1)/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - x*(k+1)/(1 + x*(k+1)/Q(k+1)).
E.g.f.: 1 + x*Q(0) where Q(k) = 1 - x^2/( x^2 + (2*k+1)*(2*k+3)/Q(k+1)).
G.f.: 2 - T(0)/(1+x) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 + (1+x)^2/T(k+1)).
E.g.f.: 1/(x - Q(0)) where Q(k) = 4*k^2 - 1 + 2*x + x^2*(2*k-1)*(2*k+3)/Q(k+1). (End)
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A001057. - Michael Somos, Jan 03 2013
From Paul Curtz, Mar 06 2014: (Start)
a(2n) = A000007(n).
a(2n+1) = (-1)^n*A000182(n+1).
a(n) is the binomial transform of A122045(n).
a(n) is the row sum of A081658. For fractional Euler numbers see A238800.
a(n) + A122045(n) = 2, 1, -1, -2, 5, 16, ... = -A163982(n).
a(n) - A122045(n) = -A163747(n).
a(n) is the Akiyama-Tanigawa transform applied to 1, 0, -1/2, -1/2, -1/4, 0, ... = A046978(n+3)/A016116(n). (End)
a(n) = 2^(2*n+1)*(zeta(-n,1/2) - zeta(-n, 1)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
a(n) = 2^(n + 1)*(2^(n + 1) - 1)*Bernoulli(n + 1, 1)/(n + 1). (From Bill Gosper, Oct 28 2015) - N. J. A. Sloane, Oct 28 2015 [See the above comment from Peter Luschny, Apr 22 2009.]
a(n) = -(n mod 2)*((-1)^n + Sum_{k=1..n-1} (-1)^k*C(n,k)*a(n-k)) for n >= 1. - Peter Luschny, Jun 01 2016
a(n) = (-2)^n*F_{n}(-1/2), where F_{n}(x) is the Fubini polynomial. - Peter Luschny, May 21 2021

Extensions

New name from Peter Luschny, Mar 12 2015

A009545 Expansion of e.g.f. sin(x)*exp(x).

Original entry on oeis.org

0, 1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0, -64, -128, -128, 0, 256, 512, 512, 0, -1024, -2048, -2048, 0, 4096, 8192, 8192, 0, -16384, -32768, -32768, 0, 65536, 131072, 131072, 0, -262144, -524288, -524288, 0, 1048576, 2097152, 2097152, 0, -4194304, -8388608, -8388608, 0, 16777216, 33554432
Offset: 0

Views

Author

Keywords

Comments

Also first of the two associated sequences a(n) and b(n) built from a(0)=0 and b(0)=1 with the formulas a(n) = a(n-1) + b(n-1) and b(n) = -a(n-1) + b(n-1). The initial terms of the second sequence b(n) are 1, 1, 0, -2, -4, -4, 0, 8, 16, 16, 0, -32, -64, -64, 0, 128, 256, ... The points Mn(a(n)+b(n)*I) of the complex plane are located on the spiral logarithmic rho = 2*(1/2)^(2*theta)/Pi) and on the straight lines drawn from the origin with slopes: infinity, 1/2, 0, -1/2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007
A000225: (1, 3, 7, 15, 31, ...) = 2^n - 1 = INVERT transform of A009545 starting (1, 2, 2, 0, -4, -8, ...). (Cf. comments in A144081). - Gary W. Adamson, Sep 10 2008
Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - R. J. Mathar, Aug 10 2012
The variant 0, 1, -2, 2, 0, -4, 8, -8, 0, 16, -32, 32, 0, -64, (with different signs) is the Lucas U(-2,2) sequence. - R. J. Mathar, Jan 08 2013
(1+i)^n = A146559(n) + a(n)*i where i = sqrt(-1). - Philippe Deléham, Feb 13 2013
This is the Lucas U(2,2) sequence. - Raphie Frank, Nov 28 2015
{A146559, A009545} are the difference analogs of {cos(x),sin(x)} (cf. [Shevelev] link). - Vladimir Shevelev, Jun 08 2017

Crossrefs

Cf. A009116. For minor variants of this sequence see A108520, A084102, A099087.
a(2*n) = A056594(n)*2^n, n >= 1, a(2*n+1) = A057077(n)*2^n.
This is the next term in the sequence A015518, A002605, A000129, A000079, A001477.
Cf. A000225, A144081. - Gary W. Adamson, Sep 10 2008
Cf. A146559.

Programs

  • Magma
    I:=[0,1,2,2]; [n le 4 select I[n] else -4*Self(n-4): n in [1..60]]; // Vincenzo Librandi, Nov 29 2015
    
  • Maple
    t1 := sum(n*x^n, n=0..100): F := series(t1/(1+x*t1), x, 100): for i from 0 to 50 do printf(`%d, `, coeff(F, x, i)) od: # Zerinvary Lajos, Mar 22 2009
    G(x):=exp(x)*sin(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..50 ); # Zerinvary Lajos, Apr 05 2009
    A009545 := n -> `if`(n<2, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2)):
    seq(simplify(A009545(n)), n=0..50); # Peter Luschny, Dec 17 2015
  • Mathematica
    nn=104; Range[0,nn-1]! CoefficientList[Series[Sin[x]Exp[x], {x,0,nn}], x] (* T. D. Noe, May 26 2007 *)
    Join[{a=0,b=1},Table[c=2*b-2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
    f[n_] := (1 + I)^(n - 2) + (1 - I)^(n - 2); Array[f, 51, 0] (* Robert G. Wilson v, May 30 2011 *)
    LinearRecurrence[{2,-2},{0,1},110] (* Harvey P. Dale, Oct 13 2011 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x)*sin(x))) /* Joerg Arndt, Apr 24 2011 */
    
  • PARI
    x='x+O('x^100); concat(0, Vec(x/(1-2*x+2*x^2))) \\ Altug Alkan, Dec 04 2015
    
  • Python
    def A009545(n): return ((0, 1, 2, 2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1) # Chai Wah Wu, Feb 16 2024
  • Sage
    [lucas_number1(n,2,2) for n in range(0, 51)] # Zerinvary Lajos, Apr 23 2009
    
  • Sage
    def A146559():
        x, y = 0, -1
        while True:
            yield x
            x, y = x - y, x + y
    a = A146559(); [next(a) for i in range(40)]  # Peter Luschny, Jul 11 2013
    

Formula

a(0)=0; a(1)=1; a(2)=2; a(3)=2; a(n) = -4*a(n-4), n>3. - Larry Reeves (larryr(AT)acm.org), Aug 24 2000
Imaginary part of (1+i)^n. - Marc LeBrun
G.f.: x/(1 - 2*x + 2*x^2).
E.g.f.: sin(x)*exp(x).
a(n) = S(n-1, sqrt(2))*(sqrt(2))^(n-1) with S(n, x)= U(n, x/2) Chebyshev's polynomials of the 2nd kind, Cf. A049310, S(-1, x) := 0.
a(n) = ((1+i)^n - (1-i)^n)/(2*i) = 2*a(n-1) - 2*a(n-2) (with a(0)=0 and a(1)=1). - Henry Bottomley, May 10 2001
a(n) = (1+i)^(n-2) + (1-i)^(n-2). - Benoit Cloitre, Oct 28 2002
a(n) = Sum_{k=0..n-1} (-1)^floor(k/2)*binomial(n-1, k). - Benoit Cloitre, Jan 31 2003
a(n) = 2^(n/2)sin(Pi*n/4). - Paul Barry, Sep 17 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)*(-1)^k. - Paul Barry, Sep 20 2003
a(n+1) = Sum_{k=0..n} 2^k*A109466(n,k). - Philippe Deléham, Nov 13 2006
a(n) = 2*((1/2)^(2*theta(n)/Pi))*cos(theta(n)) where theta(4*p+1) = p*Pi + Pi/2, theta(4*p+2) = p*Pi + Pi/4, theta(4*p+3) = p*Pi - Pi/4, theta(4*p+4) = p*Pi - Pi/2, or a(0)=0, a(1)=1, a(2)=2, a(3)=2, and for n>3 a(n)=-4*a(n-4). Same formulas for the second sequence replacing cosines with sines. For example: a(0) = 0, b(0) = 1; a(1) = 0+1 = 1, b(1) = -0+1 = 1; a(2) = 1+1 = 2, b(2) = -1+1 = 0; a(3) = 2+0 = 2, b(3) = -2+0 = -2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, which implies the sequence is identical to its fourth differences. Binomial transform of 0, 1, 0, -1. - Paul Curtz, Dec 21 2007
Logarithm g.f. arctan(x/(1-x)) = Sum_{n>0} a(n)/n*x^n. - Vladimir Kruchinin, Aug 11 2010
a(n) = A046978(n) * A016116(n). - Paul Curtz, Apr 24 2011
E.g.f.: exp(x) * sin(x) = x + x^2/(G(0)-x); G(k) = 2k + 1 + x - x*(2k+1)/(4k+3+x+x^2*(4k+3)/( (2k+2)*(4k+5) - x^2 - x*(2k+2)*(4k+5)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011
a(n) = Im( (1+i)^n ) where i=sqrt(-1). - Stanislav Sykora, Jun 11 2012
G.f.: x*U(0) where U(k) = 1 + x*(k+3) - x*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: x + x^2*W(0), where W(k) = 1 + 1/(1 - x*(k+1)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 2*x)/( x*(4*k+4 - 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n) = (A^n - B^n)/(A - B), where A = 1 + i and B = 1 - i; A and B are solutions of x^2 - 2*x + 2 = 0. - Raphie Frank, Nov 28 2015
a(n) = 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2) for n >= 2. - Peter Luschny, Dec 17 2015
a(k+m) = a(k)*A146559(m) + a(m)*A146559(k). - Vladimir Shevelev, Jun 08 2017

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
More terms from Larry Reeves (larryr(AT)acm.org), Aug 24 2000
Definition corrected by Joerg Arndt, Apr 24 2011

A153641 Nonzero coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent, and Bernoulli numbers (triangle read by rows).

Original entry on oeis.org

1, 1, 1, -1, 1, -3, 1, -6, 5, 1, -10, 25, 1, -15, 75, -61, 1, -21, 175, -427, 1, -28, 350, -1708, 1385, 1, -36, 630, -5124, 12465, 1, -45, 1050, -12810, 62325, -50521, 1, -55, 1650, -28182, 228525, -555731, 1, -66, 2475, -56364, 685575, -3334386, 2702765, 1
Offset: 0

Views

Author

Peter Luschny, Dec 29 2008

Keywords

Comments

In the following the expression [n odd] is 1 if n is odd, 0 otherwise.
(+) W_n(0) = E_n are the Euler (or secant) numbers A122045.
(+) W_n(1) = T_n are the signed tangent numbers, see A009006.
(+) W_{n-1}(1) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli number A027641/A027642.
(+) W_n(-1) 2^{-n}(n+1) = G_n the Genocchi number A036968.
(+) W_n(1/2) 2^{n} are the signed generalized Euler (Springer) number, see A001586.
(+) | W_n([n odd]) | the number of alternating permutations A000111.
(+) | W_n([n odd]) / n! | for 0<=n the Euler zeta number A099612/A099617 (see Wikipedia on Bernoulli number). - Peter Luschny, Dec 29 2008
The diagonals in the full triangle (with zero coefficients) of the polynomials have the general form E(k)*binomial(n+k,k) (k>=0 fixed, n=0,1,...) where E(n) are the Euler numbers in the enumeration A122045. For k=2 we find the triangular numbers A000217 and for k=4 A154286. - Peter Luschny, Jan 06 2009
From Peter Bala, Jun 10 2009: (Start)
The Swiss-Knife polynomials W_n(x) may be expressed in terms of the Bernoulli polynomials B(n,x) as
... W_n(x) = 4^(n+1)/(2*n+2)*[B(n+1,(x+3)/4) - B(n+1,(x+1)/4)].
The Swiss-Knife polynomials are, apart from a multiplying factor, examples of generalized Bernoulli polynomials.
Let X be the Dirichlet character modulus 4 defined by X(4*n+1) = 1, X(4*n+3) = -1 and X(2*n) = 0. The generalized Bernoulli polynomials B(X;n,x), n = 1,2,..., associated with the character X are defined by means of the generating function
... t*exp(x*t)*(exp(t)-exp(3*t))/(exp(4*t)-1) = sum {n = 1..inf} B(X;n,x)*t^n/n!.
The first few values are B(X;1,x) = -1/2, B(X;2,x) = -x, B(X,3,x) = -3/2*(x^2-1) and B(X;4,x) = -2*(x^3-3*x).
In general, W_n(x) = -2/(n+1)*B(X;n+1,x).
For the theory of generalized Bernoulli polynomials associated to a periodic arithmetical function see [Cohen, Section 9.4].
The generalized Bernoulli polynomials may be used to evaluate twisted sums of k-th powers. For the present case the result is
sum{n = 0..4*N-1} X(n)*n^k = 1^k - 3^k + 5^k - 7^k + ... - (4*N-1)^k
= [B(X;k+1,4*N) - B(X;k+1,0)]/(k+1) = [W_k(0) - W_k(4*N)]/2.
For the proof apply [Cohen, Corollary 9.4.17 with m = 4 and x = 0].
The generalized Bernoulli polynomials and the Swiss-Knife polynomials are also related to infinite sums of powers through their Fourier series - see the formula section below. For a table of the coefficients of generalized Bernoulli polynomials attached to a Dirichlet character modulus 8 see A151751.
(End)
The Swiss-Knife polynomials provide a general formula for alternating sums of powers similar to the formula which are provided by the Bernoulli polynomials for non-alternating sums of powers (see the Luschny link). Sequences covered by this formula include A001057, A062393, A062392, A011934, A144129, A077221, A137501, A046092. - Peter Luschny, Jul 12 2009
The greatest common divisor of the nonzero coefficients of the decapitated Swiss-Knife polynomials is exp(Lambda(n)), where Lambda(n) is the von Mangoldt function for odd primes, symbolically:
gcd(coeffs(SKP_{n}(x) - x^n)) = A155457(n) (n>1). - Peter Luschny, Dec 16 2009
Another version is at A119879. - Philippe Deléham, Oct 26 2013

Examples

			1
x
x^2  -1
x^3  -3x
x^4  -6x^2   +5
x^5 -10x^3  +25x
x^6 -15x^4  +75x^2  -61
x^7 -21x^5 +175x^3 -427x
		

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag. [From Peter Bala, Jun 10 2009]

Crossrefs

W_n(k), k=0,1,...
W_0: 1, 1, 1, 1, 1, 1, ........ A000012
W_1: 0, 1, 2, 3, 4, 5, ........ A001477
W_2: -1, 0, 3, 8, 15, 24, ........ A067998
W_3: 0, -2, 2, 18, 52, 110, ........ A121670
W_4: 5, 0, -3, 32, 165, 480, ........
W_n(k), n=0,1,...
k=0: 1, 0, -1, 0, 5, 0, -61, ... A122045
k=1: 1, 1, 0, -2, 0, 16, 0, ... A155585
k=2: 1, 2, 3, 2, -3, 2, 63, ... A119880
k=3: 1, 3, 8, 18, 32, 48, 128, ... A119881
k=4: 1, 4, 15, 52, 165, 484, ........ [Peter Luschny, Jul 07 2009]

Programs

  • Maple
    w := proc(n,x) local v,k,pow,chen; pow := (a,b) -> if a = 0 and b = 0 then 1 else a^b fi; chen := proc(m) if irem(m+1,4) = 0 then RETURN(0) fi; 1/((-1)^iquo(m+1,4) *2^iquo(m,2)) end; add(add((-1)^v*binomial(k,v)*pow(v+x+1,n)*chen(k),v=0..k), k=0..n) end:
    # Coefficients with zeros:
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*sech(t),t,16),t,i),x,i-n),n=0..i)), i=0..8);
    # Recursion
    W := proc(n,z) option remember; local k,p;
    if n = 0 then 1 else p := irem(n+1,2);
    z^n - p + add(`if`(irem(k,2)=1,0,
    W(k,0)*binomial(n,k)*(power(z,n-k)-p)),k=2..n-1) fi end:
    # Peter Luschny, edited and additions Jul 07 2009, May 13 2010, Oct 24 2011
  • Mathematica
    max = 9; rows = (Reverse[ CoefficientList[ #, x]] & ) /@ CoefficientList[ Series[ Exp[x*t]*Sech[t], {t, 0, max}], t]*Range[0, max]!; par[coefs_] := (p = Partition[ coefs, 2][[All, 1]]; If[ EvenQ[ Length[ coefs]], p, Append[ p, Last[ coefs]]]); Flatten[ par /@ rows] (* Jean-François Alcover, Oct 03 2011, after g.f. *)
    sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse // Select[#, # =!= 0 &] &, {n, 0, 13}] // Flatten (* Jean-François Alcover, May 21 2013 *)
    Flatten@Table[Binomial[n, 2k] EulerE[2k], {n, 0, 12}, {k, 0, n/2}](* Oliver Seipel, Jan 14 2025 *)
  • Sage
    def A046978(k):
        if k % 4 == 0:
            return 0
        return (-1)**(k // 4)
    def A153641_poly(n, x):
        return expand(add(2**(-(k // 2))*A046978(k+1)*add((-1)**v*binomial(k,v)*(v+x+1)**n for v in (0..k)) for k in (0..n)))
    for n in (0..7): print(A153641_poly(n, x))  # Peter Luschny, Oct 24 2011

Formula

W_n(x) = Sum_{k=0..n}{v=0..k} (-1)^v binomial(k,v)*c_k*(x+v+1)^n where c_k = frac((-1)^(floor(k/4))/2^(floor(k/2))) [4 not div k] (Iverson notation).
From Peter Bala, Jun 10 2009: (Start)
E.g.f.: 2*exp(x*t)*(exp(t)-exp(3*t))/(1-exp(4*t))= 1 + x*t + (x^2-1)*t^2/2! + (x^3-3*x)*t^3/3! + ....
W_n(x) = 1/(2*n+2)*Sum_{k=0..n+1} 1/(k+1)*Sum_{i=0..k} (-1)^i*binomial(k,i)*((x+4*i+3)^(n+1) - (x+4*i+1)^(n+1)).
Fourier series expansion for the generalized Bernoulli polynomials:
B(X;2*n,x) = (-1)^n*(2/Pi)^(2*n)*(2*n)! * {sin(Pi*x/2)/1^(2*n) - sin(3*Pi*x/2)/3^(2*n) + sin(5*Pi*x/2)/5^(2*n) - ...}, valid for 0 <= x <= 1 when n >= 1.
B(X;2*n+1,x) = (-1)^(n+1)*(2/Pi)^(2*n+1)*(2*n+1)! * {cos(Pi*x/2)/1^(2*n+1) - cos(3*Pi*x/2)/3^(2*n+1) + cos(5*Pi*x/2)/5^(2*n+1) - ...}, valid for 0 <= x <= 1 when n >= 1 and for 0 <= x < 1 when n = 0.
(End)
E.g.f.: exp(x*t) * sech(t). - Peter Luschny, Jul 07 2009
O.g.f. as a J-fraction: z/(1-x*z+z^2/(1-x*z+4*z^2/(1-x*z+9*z^2/(1-x*z+...)))) = z + x*z^2 + (x^2-1)*z^3 + (x^3-3*x)*z^4 + .... - Peter Bala, Mar 11 2012
Conjectural o.g.f.: Sum_{n >= 0} (1/2^((n-1)/2))*cos((n+1)*Pi/4)*( Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - (k + x)*t) ) = 1 + x*t + (x^2 - 1)*t^2 + (x^3 - 3*x)*t^3 + ... (checked up to O(t^13)), which leads to W_n(x) = Sum_{k = 0..n} 1/2^((k - 1)/2)*cos((k + 1)*Pi/4)*( Sum_{j = 0..k} (-1)^j*binomial(k, j)*(j + x)^n ). - Peter Bala, Oct 03 2016

A166486 Periodic sequence [0,1,1,1] of length 4; Characteristic function of numbers that are not multiples of 4.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 15 2009

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^5 + x^6 + x^7 + x^9 + x^10 + x^11 + x^13 + x^14 + ...
		

Crossrefs

Characteristic function of A042968, whose complement A008586 gives the positions of zeros (after its initial term).
Absolute values of A046978, A075553, A131729, A358839, and for n >= 1, also of A112299 and of A257196.
Sequence A152822 shifted by two terms.
Row 3 of A225145, Column 2 of A229940 (after the initial term).
First differences of A057353. Sum of A359370 and A359372.
Cf. A000035, A011655, A011558, A097325, A109720, A168181, A168182, A168184, A145568, A168185 (characteristic functions for numbers that are not multiples of k = 2, 3 and 5..12).
Cf. A010873, A033436, A069733 (inverse Möbius transform), A121262 (one's complement), A190621 [= n*a(n)], A355689 (Dirichlet inverse).

Programs

  • Magma
    [Ceiling(n/4)-Floor(n/4) : n in [0..50]]; // Wesley Ivan Hurt, Jun 20 2014
    
  • Maple
    seq(1/2*((n^3+n) mod 4), n=0..50); # Gary Detlefs, Mar 20 2010
  • Mathematica
    PadRight[{},120,{0,1,1,1}] (* Harvey P. Dale, Jul 04 2013 *)
    Table[Ceiling[n/4] - Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 20 2014 *)
    a[ n_] := Sign[ Mod[n, 4]]; (* Michael Somos, May 05 2015 *)
  • PARI
    {a(n) = !!(n%4)};
    
  • Python
    def A166486(n): return (0,1,1,1)[n&3] # Chai Wah Wu, Jan 03 2023

Formula

G.f.: (x + x^2 + x^3) / (1 - x^4) = x * (1 + x + x^2) / ((1 - x) * (1 + x) * (1 + x^2)) = x * (1 - x^3) / ((1 - x) * (1 - x^4)).
a(n) = (3 - i^n - (-i)^n - (-1)^n) / 4, where i=sqrt(-1).
Sum_{k>0} a(k)/(k*3^k) = log(5)/4.
From Reinhard Zumkeller, Nov 30 2009: (Start)
Multiplicative with a(p^e) = (if p=2 then 0^(e-1) else 1), p prime and e>0.
a(n) = 1-A121262(n).
a(A042968(n))=1; a(A008586(n))=0.
A033436(n) = Sum{k=0..n} a(k)*(n-k). (End)
a(n) = 1/2*((n^3+n) mod 4). - Gary Detlefs, Mar 20 2010
a(n) = (Fibonacci(n)*Fibonacci(3n) mod 3)/2. - Gary Detlefs Dec 21 2010
Euler transform of length 4 sequence [ 1, 0, -1, 1]. - Michael Somos, Feb 12 2011
Dirichlet g.f. (1-1/4^s)*zeta(s). - R. J. Mathar, Feb 19 2011
a(n) = Fibonacci(n)^2 mod 3. - Gary Detlefs, May 16 2011
a(n) = -1/4*cos(Pi*n)-1/2*cos(1/2*Pi*n)+3/4. - Leonid Bedratyuk, May 13 2012
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = ceiling(n/4) - floor(n/4). - Wesley Ivan Hurt, Jun 20 2014
a(n) = a(-n) for all n in Z. - Michael Somos, May 05 2015
For n >= 1, a(n) = A053866(A225546(n)) = A000035(A331733(n)). - Antti Karttunen, Jul 07 2020
a(n) = signum(n mod 4). - Alois P. Heinz, May 12 2021
From Antti Karttunen, Dec 28 2022: (Start)
a(n) = [A010873(n) > 0], where [ ] is the Iverson bracket.
a(n) = abs(A046978(n)) = abs(A075553(n)) = abs(A131729(n)) = abs(A358839(n)).
For all n >= 1, a(n) = abs(A112299(n)) = abs(A257196(n))
a(n) = A152822(2+n).
a(n) = A359370(n) + A359372(n). (End)
E.g.f.: (cosh(x) - cos(x))/2 + sinh(x). - Stefano Spezia, Aug 04 2025

Extensions

Secondary definition (from Reinhard Zumkeller's Nov 30 2009 comment) added to the name by Antti Karttunen, Dec 20 2022

A117575 Expansion of (1-x^3)/((1-x)*(1+2*x^2)).

Original entry on oeis.org

1, 1, -1, -2, 2, 4, -4, -8, 8, 16, -16, -32, 32, 64, -64, -128, 128, 256, -256, -512, 512, 1024, -1024, -2048, 2048, 4096, -4096, -8192, 8192, 16384, -16384, -32768, 32768, 65536, -65536, -131072, 131072, 262144, -262144, -524288, 524288
Offset: 0

Views

Author

Paul Barry, Mar 29 2006

Keywords

Comments

Row sums of A116949.
From Paul Curtz, Oct 24 2012: (Start)
b(n) = abs(a(n)) = A158780(n+1) = 1,1,1,2,2,4,4,8,8,8,... .
Consider the autosequence (that is a sequence whose inverse binomial transform is equal to the signed sequence) of the first kind of the example. Its numerator is A046978(n), its denominator is b(n). The numerator of the first column is A075553(n).
The denominator corresponding to the 0's is a choice.
The classical denominator is 1,1,1,2,1,4,4,8,1,16,16,32,1,... . (End)

Examples

			   0/1,  1/1    1/1,   1/2,   0/2,  -1/4,  -1/4,  -1/8, ...
   1/1,  0/1,  -1/2,  -1/2,  -1/4,   0/4,   1/8,   1/8, ...
  -1/1, -1/2,   0/2,   1/4,   1/4,   1/8,   0/8, -1/16, ...
   1/2,  1/2,   1/4,   0/4   -1/8,  -1/8, -1/16,  0/16, ...
   0/2, -1/4,  -1/4,  -1/8,   0/8,  1/16,  1/16,  1/32, ...
  -1/4,  0/4,   1/8,   1/8,  1/16,  0/16, -1/32, -1/32, ...
   1/4,  1/8,   0/8, -1/16, -1/16, -1/32,  0/32,  1/64, ...
  -1/8, -1/8, -1/16,  0/16,  1/32,  1/32,  1/64,  0/64. - _Paul Curtz_, Oct 24 2012
		

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Magma
    [1] cat [(-1)^Floor(n/2)*2^Floor((n-1)/2): n in [1..50]]; // G. C. Greubel, Apr 19 2023
    
  • Mathematica
    CoefficientList[Series[(1-x^3)/((1-x)(1+2x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{0,-2},{1,1,-1},45] (* Harvey P. Dale, Apr 09 2018 *)
  • PARI
    a(n)=if(n,(-1)^(n\2)<<((n-1)\2),1) \\ Charles R Greathouse IV, Jan 31 2012
    
  • SageMath
    def A117575(n): return 1 if (n==0) else (-1)^(n//2)*2^((n-1)//2)
    [A117575(n) for n in range(51)] # G. C. Greubel, Apr 19 2023

Formula

a(n) = a(n-1) - 2*a(n-2) + 2*a(n-3) for n >= 3.
a(n) = (cos(Pi*n/2) + sin(Pi*n/2)) * (2^((n-1)/2)*(1-(-1)^n)/2 + 2^((n-2)/2)*(1+(-1)^n)/2 + 0^n/2).
a(n+1) = Sum_{k=0..n} A122016(n,k)*(-1)^k. - Philippe Deléham, Jan 31 2012
E.g.f.: (1 + cos(sqrt(2)*x) + sqrt(2)*sin(sqrt(2)*x))/2. - Stefano Spezia, Feb 05 2023
a(n) = (-1)^floor(n/2)*2^floor((n-1)/2), with a(0) = 1. - G. C. Greubel, Apr 19 2023

A046979 Denominators of Taylor series for exp(x)*sin(x).

Original entry on oeis.org

1, 1, 1, 3, 1, 30, 90, 630, 1, 22680, 113400, 1247400, 1, 97297200, 681080400, 10216206000, 1, 1389404016000, 12504636144000, 237588086736000, 1, 49893498214560000, 548828480360160000, 12623055048283680000, 1, 3786916514485104000000, 49229914688306352000000
Offset: 0

Views

Author

Keywords

Examples

			1*x + 1*x^2 + 1/3*x^3 - 1/30*x^5 - 1/90*x^6 - 1/630*x^7 + 1/22680*x^9 + 1/113400*x^10 + ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Essentially the same as absolute values of A007415.

Programs

  • Maple
    a:= n-> denom(coeff(series(sin(x)/exp(x), x, n+1), x, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 17 2017
  • Mathematica
    Denominator[CoefficientList[Series[Exp[x]Sin[x],{x,0,30}],x] ] (* Harvey P. Dale, Feb 14 2015 *)
  • PARI
    a(n) = if (n % 4, n!/2^floor(n/2), 1); \\ Michel Marcus, Oct 12 2015

Formula

a(4n) = 1, a(n) = n!/2^floor(n/2).

A132050 Denominator of 2*n*A000111(n-1)/A000111(n): approximations of Pi using Euler (up/down) numbers.

Original entry on oeis.org

1, 1, 1, 5, 8, 61, 136, 1385, 3968, 50521, 176896, 2702765, 260096, 199360981, 951878656, 19391512145, 104932671488, 2404879675441, 14544442556416, 74074237647505, 2475749026562048, 69348874393137901, 507711943253426176
Offset: 1

Views

Author

Wolfdieter Lang, Sep 14 2007

Keywords

Comments

The rationals r(n)=2*n*e(n-1)/e(n), where e(n)=A000111(n), approximate Pi as n -> oo. - M. F. Hasler, Apr 03 2013
Numerators are given in A132049.
See the Delahaye reference and a link by W. Lang given in A132049.
From Paul Curtz, Mar 17 2013: (Start)
Apply the Akiyama-Tanigawa transform (or algorithm) to A046978(n+2)/A016116(n+1):
1, 1/2, 0, -1/4, -1/4, -1/8, 0, 1/16, 1/16;
1/2, 1, 3/4, 0, -5/8, -3/4, -7/16, 0; = Balmer0(n)
-1/2, 1/2, 9/4, 5/2, 5/8, -15/8, -49/16;
-1, -7/2, -3/4, 15/2, 25/2, 57/8;
5/2, -11/2, -99/4, -20, 215/8;
8, 77/2, -57/4, -375/2;
-61/2, 211/2, 2079/4;
-136, -1657/2;
1385/2;
The first column is PIEULER(n) = 1, 1/2, -1/2, -1, 5/2, 8, -61/2, -136, 1385/2,... = c(n)/d(n). Abs c(n+1)=1,1,1,5,8,61,... =a(n) with offset=1.
For numerators of Balmer0(n) see A076109, A000265 and A061037(n-1) (End).
Other completely unrelated rational approximations of Pi are given by A063674/A063673 and other references there. - M. F. Hasler, Apr 03 2013

Examples

			Rationals r(n): [2, 4, 3, 16/5, 25/8, 192/61, 427/136, 4352/1385, 12465/3968, 158720/50521, ...].
		

Crossrefs

Cf. triangle A008281 (main diagonal give zig-zag numbers A000111).

Programs

  • Mathematica
    e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1)*(2^(n + 1) - 1)*BernoulliB[n + 1])/(n + 1)]]; r[n_] := 2*n*(e[n - 1]/e[n]); a[n_] := Denominator[r[n]]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Mar 26 2013 *)
  • Python
    from itertools import count, islice, accumulate
    from fractions import Fraction
    def A132050_gen(): # generator of terms
        yield 1
        blist = (0,1)
        for n in count(2):
            yield Fraction(2*n*blist[-1],(blist:=tuple(accumulate(reversed(blist),initial=0)))[-1]).denominator
    A132050_list = list(islice(A132050_gen(),40)) # Chai Wah Wu, Jun 09-11 2022

Formula

a(n)=denominator(r(n)) with the rationals r(n):=2*n*e(n-1)/e(n) where e(n):=A000111(n).

Extensions

Definition made more explicit, and initial terms a(1)=a(2)=1 added by M. F. Hasler, Apr 03 2013

A241209 a(n) = E(n) - E(n+1), where E(n) are the Euler numbers A122045(n).

Original entry on oeis.org

1, 1, -1, -5, 5, 61, -61, -1385, 1385, 50521, -50521, -2702765, 2702765, 199360981, -199360981, -19391512145, 19391512145, 2404879675441, -2404879675441, -370371188237525, 370371188237525, 69348874393137901, -69348874393137901, -15514534163557086905
Offset: 0

Views

Author

Paul Curtz, Apr 17 2014

Keywords

Comments

A version of the Seidel triangle (1877) for the integer Euler numbers is
1
1 1
2 2 1
2 4 5 5
16 16 14 10 5
16 32 46 56 61 61
etc.
It is not in the OEIS. See A008282.
The first diagonal, Es(n) = 1, 1, 1, 5, 5, 61, 61, 1385, 1385, ..., comes from essentially A000364(n) repeated.
a(n) is Es(n) signed two by two.
Difference table of a(n):
1, 1, -1, -5, 5, 61, -61, -1385, ...
0, -2, -4, 10, 56, -122, -1324, ...
-2, -2, 14, 46, -178, -1202, ...
0, 16, 32, -224, -1024, ...
16, 16, -256, -800, ...
0, -272, -544, ...
-272, -272, ...
0, ...
etc.
Sum of the antidiagonals: 1, 1, -5, -11, 61, 211, -385, ... = A239322(n+1).
Main diagonal interleaved with the first upper diagonal: 1, 1, -2, -4, 14, 46, ... = signed A214267(n+1).
Inverse binomial transform (first column): A155585(n+1).
The Akiyama-Tanigawa transform applied to A046978(n+1)/A016116(n) gives
1, 1, 1/2, 0, -1/4, -1/4, -1/8, 0, ...
0, 1, 3/2, 1, 0, -3/4, -7/8, ...
-1, -1, 3/2, 4, 15/4, 3/4, ...
0, -5, -15/2, 1, 15, ...
5, 5, -51/2, -56, ...
0, 61, 183/2, ...
-61, -61, ...
0, ...
etc.
A122045(n) and A239005(n) are reciprocal sequences by their inverse binomial transform. In their respective difference table, two different signed versions of A214247(n) appear: 1) interleaved main diagonal and first under diagonal (1, -1, -1, 2, 4, -14, ...) and 2) interleaved main diagonal and first upper diagonal (1, 1, -1, -2, 4, 14, ...).

Crossrefs

Programs

  • Magma
    EulerPoly:= func< n,x | (&+[ (&+[ (-1)^j*Binomial(k,j)*(x+j)^n : j in [0..k]])/2^k: k in [0..n]]) >;
    Euler:= func< n | 2^n*EulerPoly(n, 1/2) >; // A122045
    [Euler(n) - Euler(n+1): n in [0..40]]; // G. C. Greubel, Jun 07 2023
    
  • Maple
    A241209 := proc(n) local v, k, h, m; m := `if`(n mod 2 = 0, n, n+1);
    h := k -> `if`(k mod 4 = 0, 0, (-1)^iquo(k,4));
    (-1)^n*add(2^iquo(-k,2)*h(k+1)*add((-1)^v*binomial(k,v)*(v+1)^m, v=0..k)
    ,k=0..m) end: seq(A241209(n),n=0..24); # Peter Luschny, Apr 17 2014
  • Mathematica
    skp[n_, x_]:= Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}];
    a[n_]:= skp[n, x] - skp[n+1, x]/. x->0; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 17 2014, after Peter Luschny *)
    Table[EulerE[n] - EulerE[n+1], {n,0,30}] (* Vincenzo Librandi, Jan 24 2016 *)
    -Differences/@Partition[EulerE[Range[0,30]],2,1]//Flatten (* Harvey P. Dale, Apr 16 2019 *)
  • SageMath
    [euler_number(n) - euler_number(n+1) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

a(n) = A119880(n+1) - A119880(n).
a(n) is the second column of the fractional array.
a(n) = (-1)^n*second column of the array in A239005(n).
a(n) = skp(n, 0) - skp(n+1, 0), where skp(n, x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 17 2014
E.g.f.: exp(x)/cosh(x)^2. - Sergei N. Gladkovskii, Jan 23 2016
G.f. T(0)/x-1/x, where T(k) = 1 - x*(k+1)/(x*(k+1)-(1-x)/(1-x*(k+1)/(x*(k+1)+(1-x)/T(k+1)))). - Sergei N. Gladkovskii, Jan 23 2016

A363524 a(n) = 0 if 4 divides n + 1, otherwise (-1)^floor((n + 1) / 4) * 2^floor(n / 2).

Original entry on oeis.org

1, 1, 2, 0, -4, -4, -8, 0, 16, 16, 32, 0, -64, -64, -128, 0, 256, 256, 512, 0, -1024, -1024, -2048, 0, 4096, 4096, 8192, 0, -16384, -16384, -32768, 0, 65536, 65536, 131072, 0, -262144, -262144, -524288, 0, 1048576, 1048576, 2097152, 0, -4194304, -4194304
Offset: 0

Views

Author

Peter Luschny, Jun 17 2023

Keywords

Comments

We call chen(n) = 1 / a(n) if a(n) != 0 and otherwise 0, the Chen sequence, after Kwang-Wu Chen (see link). Note how this sequence is used in the computation of the Swiss-Knife polynomials A153641.

Crossrefs

Programs

  • Maple
    a := n -> if irem(n + 1, 4) = 0 then 0 else (-1)^iquo(n + 1, 4) * 2^iquo(n, 2) fi:
    seq(a(n), n = 0..49);
    # Alternative:
    gf := (2*x^2 + x + 1)/(4*x^4 + 1): ser := series(gf, x, 24):
    seq(coeff(ser, x, n), n = 0..20);
  • Mathematica
    A363524list[nmax_]:=LinearRecurrence[{0,0,0,-4},{1,1,2,0},nmax+1];A363524list[100] (* Paolo Xausa, Aug 06 2023 *)
  • PARI
    a(n)=if(n % 4 == 3, 0, (-1)^((n + 1) \ 4) * 2^(n \ 2)) \\ Winston de Greef, Jun 30 2023
  • SageMath
    def a(n): return 0 if 4.divides(n + 1) else (-1)^((n + 1) // 4) * 2^(n // 2)
    print([a(n) for n in range(45)])
    

Formula

a(n) = [x^n] (2*x^2 + x + 1) / (4*x^4 + 1).
a(n) = A016116(n) * A046978(n + 1).

A123634 Upper half of Hankel determinant number wall for A004148.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 4, 0, 0, -1, 1, 8, 4, -2, -1, -1, 1, 17, 7, 3, -3, -1, -1, 1, 37, 25, 6, -6, -4, 0, 0, 1, 82, 121, -38, -4, -16, 0, 0, 1, 1, 185, 461, 160, -104, -64, -16, 4, 1, 1, 1, 423, 2001, 588, -144, -360, -60, -10, 5, 1, 1, 1, 978, 9225, 360, 1836, -2160, -450, -50, 15, 6, 0, 0, 1
Offset: 0

Views

Author

Michael Somos, Oct 04 2006

Keywords

Examples

			Table is:
n\k  0   1   2   3   4   5   6
--  --  --  --  --  --  --  --
0 |  1
1 |  1   1
2 |  1   1   1
3 |  1   2   0   0
4 |  1   4   0   0  -1
5 |  1   8   4  -2  -1  -1
6 |  1  17   7   3  -3  -1  -1
		

Crossrefs

Programs

  • PARI
    {T(n, k) = my(m); if( k<0 || k>n, 0, matdet( matrix(k, k, i, j, polcoeff( (1 - x + x^2 - sqrt(1 - 2*x - x^2 + x^3*(-2 + x + O(x^(m=i+j+n-k-1))))) / (2*x^2), m))))};

Formula

T(n, 0) = 1. T(n, 1) = a(n) if n>0, T(n, 2) = a(n+1)*a(n-1) - a(n)^2 if n>1, T(n, 3) = det([a(n-2), a(n-1), a(n); a(n-1), a(n), a(n+1); a(n), a(n+1), a(n+2)]) if n>2 where a(n) = A004148(n).
T(n, n) = A046978(n+1). T(n+1, n) = A132380(n+2). - Michael Somos, Dec 31 2016
Showing 1-10 of 10 results.