A007340 Numbers whose divisors' harmonic and arithmetic means are both integers.
1, 6, 140, 270, 672, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 1089270, 1421280, 1539720, 2229500, 2290260, 2457000
Offset: 1
Examples
x = 270: Sigma(0, 270) = 16, Sigma(1, 270) = 720; average divisor a = 720/16 = 45 and integer 45 divides x, x/a = 270/45 = 6, but 270 is not in A007691.
References
- G. L. Cohen, personal communication.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
- N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Wells, Curious and interesting numbers, Penguin Books, p. 124.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..847
- G. L. Cohen, Email to N. J. A. Sloane, Apr. 1994
- T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput. 73 (2004), 475-491.
- Hisanori Mishima, Factorizations of many number sequences
- Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly, 55 (1948), 615-619.
Crossrefs
Programs
-
Haskell
a007340 n = a007340_list !! (n-1) a007340_list = filter ((== 0) . a054025) a001599_list -- Reinhard Zumkeller, Dec 31 2013
-
Maple
filter:= proc(n) uses numtheory; local a; a:= sigma(n)/sigma[0](n); type(a,integer) and type(n/a,integer); end proc: select(filter, [$1..2500000]); # Robert Israel, Oct 26 2014
-
Mathematica
Do[ a = DivisorSigma[0, n]/ DivisorSigma[1, n]; If[IntegerQ[n*a] && IntegerQ[1/a], Print[n]], {n, 1, 2500000}] (* Labos Elemer *) ahmQ[n_] := Module[{dn = Divisors[n]}, IntegerQ[Mean[dn]] && IntegerQ[HarmonicMean[dn]]]; Select[Range[2500000], ahmQ] (* Harvey P. Dale, Nov 16 2011 *)
-
PARI
is(n)=my(d=divisors(n),s=vecsum(d)); s%#d==0 && #d*n%s==0 \\ Charles R Greathouse IV, Feb 07 2017
Formula
a = Sigma(1, x)/Sigma(0, x) integer and b = x/a also.
Extensions
More terms from Robert G. Wilson v, Oct 03 2002
Edited by N. J. A. Sloane, Oct 05 2008 at the suggestion of R. J. Mathar
Comments