A047098 a(n) = 2*binomial(3*n, n) - Sum_{k=0..n} binomial(3*n, k).
1, 2, 8, 38, 196, 1062, 5948, 34120, 199316, 1181126, 7080928, 42860534, 261542752, 1607076200, 9934255472, 61732449648, 385393229460, 2415935640198, 15200964233864, 95962904716402, 607640599286276, 3858198001960438, 24559243585545644, 156692889782067712
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1211
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Christopher R. Cornwell and Stephen P. Humphries, Counting fundamental paths in certain Garside semigroups, Journal of Knot Theory and Its Ramifications, Vol. 17 (2008), No. 02, pp. 191-211.
Programs
-
Maple
A047098 := n -> 2*binomial(3*n, n)-add(binomial(3*n, k), k=0..n);
-
Mathematica
Table[2Binomial[3n,n]-Sum[Binomial[3n,k],{k,0,n}],{n,0,35}] (* Harvey P. Dale, Jul 27 2011 *)
-
PARI
a(n)=if(n<0,0,polcoeff((((1+10*x-2*x^2)+(1-4*x)*sqrt(1-4*x+x*O(x^n)))/2)^n,n))
-
PARI
a(n)=if(n<0,0, 2*binomial(3*n,n)-sum(k=0,n,binomial(3*n,k)))
Formula
G.f. A(x)=y satisfies (8x-1)y^3-y^2+y+1=0. - Michael Somos, Jan 28 2004
Coefficient of x^n in ((1+10x-2x^2+(1-4x)^(3/2))/2)^n. - Michael Somos, Sep 25 2003
a(n) = Sum_{k = 0..n} A109971(k)*2^k; a(0) = 1, a(n) = Sum_{k = 0..n} 2^k*C(3n-k,n-k)*2*k/(3*n-k), n > 0. - Paul Barry, Jan 21 2007
Conjecture: 2*n*(2*n-1)*a(n) +(-71*n^2+112*n-48)*a(n-1) +3*(131*n^2-391*n+296)*a(n-2) -72*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
a(n) = A321957(n) + 2*binomial(3*n, n) - 8^n. - Peter Luschny, Nov 22 2018
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. - Peter Bala, Mar 05 2022
Extensions
Clark Kimberling, Dec 08 2006, changed "T(3n,2n)" to "T(2n,n)" in the comment line, but observes that some of the other comments seem to apply to the sequence T(3n,2n) rather than to the sequence T(2n,n).
Edited by N. J. A. Sloane, Dec 21 2006, replacing the old definition in terms of A047089 by an explicit formula supplied by Benoit Cloitre, Oct 25 2003.
Comments