A047207 Numbers that are congruent to {0, 1, 3, 4} mod 5.
0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..8000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 5 in [0, 1, 3, 4]]; // Wesley Ivan Hurt, May 30 2016
-
Maple
seq(floor((5*n-3)/4), n=1..57); # Gary Detlefs, Mar 06 2010
-
Mathematica
Flatten[Table[5*n + {0, 1, 3, 4}, {n, 0, 20}]] (* T. D. Noe, Nov 12 2013 *) LinearRecurrence[{1,0,0,1,-1},{0,1,3,4,5},100] (* Harvey P. Dale, Jan 31 2022 *)
-
PARI
forstep(n=0,99,[1,2,1,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
Formula
a(n) = floor((5*n-3)/4). - Gary Detlefs, Mar 06 2010
G.f.: x^2*(1 + 2*x + x^2 + x^3) / ( (1 + x)*(x^2 + 1)*(x - 1)^2 ). - R. J. Mathar, Oct 08 2011
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=3, b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011
From Wesley Ivan Hurt, May 30 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (10*n-9-i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n)/8, where i=sqrt(-1).
E.g.f.: (4 - sin(x) + cos(x) + (5*x - 4)*sinh(x) + 5*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + 3*sqrt(5)*log(phi)/10 + sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
Comments