cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047207 Numbers that are congruent to {0, 1, 3, 4} mod 5.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84
Offset: 1

Views

Author

Keywords

Comments

Numbers not ending in 2 or 7. - Bruno Berselli, Oct 30 2017

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 5 in [0, 1, 3, 4]]; // Wesley Ivan Hurt, May 30 2016
  • Maple
    seq(floor((5*n-3)/4), n=1..57); # Gary Detlefs, Mar 06 2010
  • Mathematica
    Flatten[Table[5*n + {0, 1, 3, 4}, {n, 0, 20}]] (* T. D. Noe, Nov 12 2013 *)
    LinearRecurrence[{1,0,0,1,-1},{0,1,3,4,5},100] (* Harvey P. Dale, Jan 31 2022 *)
  • PARI
    forstep(n=0,99,[1,2,1,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    

Formula

a(n) = floor((5*n-3)/4). - Gary Detlefs, Mar 06 2010
G.f.: x^2*(1 + 2*x + x^2 + x^3) / ( (1 + x)*(x^2 + 1)*(x - 1)^2 ). - R. J. Mathar, Oct 08 2011
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=3, b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011
From Wesley Ivan Hurt, May 30 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (10*n-9-i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n)/8, where i=sqrt(-1).
a(2*k) = A047209(k), a(2*k-1) = A047218(k). (End)
E.g.f.: (4 - sin(x) + cos(x) + (5*x - 4)*sinh(x) + 5*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + 3*sqrt(5)*log(phi)/10 + sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021