cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047246 Numbers that are congruent to {0, 1, 2, 3} mod 6.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15, 18, 19, 20, 21, 24, 25, 26, 27, 30, 31, 32, 33, 36, 37, 38, 39, 42, 43, 44, 45, 48, 49, 50, 51, 54, 55, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 72, 73, 74, 75, 78, 79, 80, 81, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98
Offset: 1

Views

Author

Keywords

Comments

The sequence is the interleaving of A047238 with A047241. - Guenther Schrack, Feb 12 2019

Crossrefs

Cf. A045331 (primes congruent to {1,2,3} mod 6), A047238, A047241.
Complement: A047257.

Programs

  • GAP
    Filtered([0..100],n->n mod 6 = 0 or n mod 6 = 1 or n mod 6 = 2 or n mod 6 = 3); # Muniru A Asiru, Feb 20 2019
  • Haskell
    a047246 n = a047246_list !! (n-1)
    a047246_list = [0..3] ++ map (+ 6) a047246_list
    -- Reinhard Zumkeller, Jan 15 2013
    
  • Magma
    [Floor((6/5)*Floor(5*(n-1)/4)) : n in [1..100]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047246:=n->(6*n-9-I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/4: seq(A047246(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Table[(6n-9-I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
  • PARI
    my(x='x+O('x^70)); concat([0], Vec(x^2*(1+x+x^2+3*x^3)/((1-x)*(1-x^4)))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    a=(x^2*(1+x+x^2+3*x^3)/((1-x)*(1-x^4))).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019
    

Formula

G.f.: x^2*(1+x+x^2+3*x^3) / ((1+x)*(1-x)^2*(1+x^2)). - R. J. Mathar, Oct 08 2011
a(n) = floor((6/5)*floor(5*(n-1)/4)). - Bruno Berselli, May 03 2016
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6*n - 9 - i^(2*n) - (1-i)*i^(-n) - (1+i)*i^n)/4 where i=sqrt(-1).
a(2*n) = A047241(n), a(2*n-1) = A047238(n). (End)
E.g.f.: (6 + sin(x) - cos(x) + (3*x - 4)*sinh(x) + (3*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, May 21 2016
From Guenther Schrack, Feb 12 2019: (Start)
a(n) = (6*n - 9 - (-1)^n - 2*(-1)^(n*(n+1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=1, a(3)=2, a(4)=3, for n > 4. (End)
Sum_{n>=2} (-1)^n/a(n) = Pi/(6*sqrt(3)) + 2*log(2)/3. - Amiram Eldar, Dec 16 2021
a(n)-a(n-1) = A093148(n-2). - R. J. Mathar, May 01 2024

Extensions

More terms from Wesley Ivan Hurt, May 21 2016