A047342 Numbers that are congruent to {0, 3, 4} mod 7.
0, 3, 4, 7, 10, 11, 14, 17, 18, 21, 24, 25, 28, 31, 32, 35, 38, 39, 42, 45, 46, 49, 52, 53, 56, 59, 60, 63, 66, 67, 70, 73, 74, 77, 80, 81, 84, 87, 88, 91, 94, 95, 98, 101, 102, 105, 108, 109, 112, 115, 116, 119, 122, 123, 126, 129, 130, 133, 136, 137, 140
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 3, 4]]; // Wesley Ivan Hurt, Jun 13 2016
-
Maple
A047342:=n->(21*n-21-6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047342(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
-
Mathematica
Select[Range[0,150], MemberQ[{0,3,4}, Mod[#,7]]&] (* Harvey P. Dale, Mar 18 2011 *) CoefficientList[Series[(3x+x^2+3x^3)/((-1+x)^2(1+x+x^2)),{x,0,160}],x] (* Vladimir Joseph Stephan Orlovsky, Jan 26 2012 *) LinearRecurrence[{1, 0, 1, -1},{0, 3, 4, 7},61] (* Ray Chandler, Aug 25 2015 *)
Formula
G.f.: x(3+x+3x^2)/((1-x)^2*(1+x+x^2)). - R. J. Mathar, Sep 17 2008
a(n) = a(n-1) + a(n-3) - a(n-4), n>4. - Vincenzo Librandi, Mar 24 2011
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = (21*n-21-6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-3, a(3k-1) = 7k-4, a(3k-2) = 7k-7. (End)
Comments