cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002641 Numbers k such that (k^2 + k + 1)/7 is prime.

Original entry on oeis.org

4, 9, 11, 23, 32, 39, 44, 51, 53, 60, 65, 72, 86, 93, 95, 114, 123, 156, 170, 179, 186, 200, 207, 212, 219, 228, 233, 240, 249, 261, 270, 303, 317, 333, 338, 345, 375, 389, 401, 443, 452, 473, 480, 492, 515, 534, 548, 564, 578, 585, 597, 599, 611, 641, 660, 662
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A047348.

Programs

Extensions

More terms from Jon E. Schoenfield, Mar 24 2010

A047300 Numbers that are congruent to {2, 3, 4, 6} mod 7.

Original entry on oeis.org

2, 3, 4, 6, 9, 10, 11, 13, 16, 17, 18, 20, 23, 24, 25, 27, 30, 31, 32, 34, 37, 38, 39, 41, 44, 45, 46, 48, 51, 52, 53, 55, 58, 59, 60, 62, 65, 66, 67, 69, 72, 73, 74, 76, 79, 80, 81, 83, 86, 87, 88, 90, 93, 94, 95, 97, 100, 101, 102, 104, 107, 108, 109, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [2, 3, 4, 6]]; // Wesley Ivan Hurt, Jun 02 2016
  • Maple
    A047300:=n->(14*n-5-I^(2*n)-(1-3*I)*I^(-n)-(1+3*I)*I^n)/8: seq(A047300(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
  • Mathematica
    Table[(14n-5-I^(2n)-(1-3*I)*I^(-n)-(1+3*I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 02 2016 *)

Formula

G.f.: x*(2+x+x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-5-i^(2*n)-(1-3*i)*i^(-n)-(1+3*i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047280(k), a(2k-1) = A047348(k). (End)

A047338 Numbers that are congruent to {1, 2, 3, 4} mod 7.

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25, 29, 30, 31, 32, 36, 37, 38, 39, 43, 44, 45, 46, 50, 51, 52, 53, 57, 58, 59, 60, 64, 65, 66, 67, 71, 72, 73, 74, 78, 79, 80, 81, 85, 86, 87, 88, 92, 93, 94, 95, 99, 100, 101, 102, 106, 107, 108, 109
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [1, 2, 3, 4]]; // Wesley Ivan Hurt, May 23 2016
  • Maple
    A047338:=n->(14*n-15-3*I^(2*n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8: seq(A047338(n), n=1..100); # Wesley Ivan Hurt, May 23 2016
  • Mathematica
    Table[(14n-15-3*I^(2n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 23 2016 *)

Formula

G.f.: x*(1+x+x^2+x^3+3*x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-15-3*i^(2n)-(3-3*i)*i^(-n)-(3+3*i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047348(n), a(2n-1) = A047356(n). (End)
E.g.f.: (12 + 3*(sin(x) - cos(x)) + (7*x - 6)*sinh(x) + (7*x - 9)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016

Extensions

More terms from Wesley Ivan Hurt, May 23 2016

A047340 Numbers that are congruent to {0, 2, 3, 4} mod 7.

Original entry on oeis.org

0, 2, 3, 4, 7, 9, 10, 11, 14, 16, 17, 18, 21, 23, 24, 25, 28, 30, 31, 32, 35, 37, 38, 39, 42, 44, 45, 46, 49, 51, 52, 53, 56, 58, 59, 60, 63, 65, 66, 67, 70, 72, 73, 74, 77, 79, 80, 81, 84, 86, 87, 88, 91, 93, 94, 95, 98, 100, 101, 102, 105, 107, 108, 109, 112
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0,2,3,4]]; // Vincenzo Librandi, Feb 17 2014
  • Maple
    A047340:=n->(14*n-17-I^(2*n)-(3-I)*I^(-n)-(3+I)*I^n)/8: seq(A047340(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Select[Range[0,100],MemberQ[{0,2,3,4},Mod[#,7]]&] (* or *) LinearRecurrence[ {1,0,0,1,-1},{0,2,3,4,7},100] (* Harvey P. Dale, Feb 16 2014 *)
    CoefficientList[Series[x (2 + x + x^2 + 3 x^3)/((1 + x) (1 + x^2) (x - 1)^2), {x, 0, 200}], x] (* Vincenzo Librandi, Feb 17 2014 *)

Formula

G.f.: x^2*(2+x+x^2+3*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (14n-17-i^(2n)-(3-i)*i^(-n)-(3+i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047348(n), a(2n-1) = A047355(n). (End)

Extensions

More terms from Vincenzo Librandi, Feb 17 2014

A047362 Numbers that are congruent to {2, 3, 4, 5} mod 7.

Original entry on oeis.org

2, 3, 4, 5, 9, 10, 11, 12, 16, 17, 18, 19, 23, 24, 25, 26, 30, 31, 32, 33, 37, 38, 39, 40, 44, 45, 46, 47, 51, 52, 53, 54, 58, 59, 60, 61, 65, 66, 67, 68, 72, 73, 74, 75, 79, 80, 81, 82, 86, 87, 88, 89, 93, 94, 95, 96, 100, 101, 102, 103, 107, 108, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [2, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 03 2016
  • Maple
    A047362:=n->(14*n-7-3*(I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n))/8: seq(A047362(n), n=1..100); # Wesley Ivan Hurt, Jun 03 2016
  • Mathematica
    Select[Range[100], MemberQ[{2,3,4,5}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {2,3,4,5,9}, 60] (* Harvey P. Dale, Oct 03 2015 *)

Formula

G.f.: x*(2*x^2+3*x+2)*(x^2-x+1) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 03 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-7-3*(i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n))/8 where i=sqrt(-1).
a(2k) = A047389(k), a(2k-1) = A047348(k). (End)
Showing 1-5 of 5 results.