cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047370 Numbers that are congruent to {2, 3, 5} mod 7.

Original entry on oeis.org

2, 3, 5, 9, 10, 12, 16, 17, 19, 23, 24, 26, 30, 31, 33, 37, 38, 40, 44, 45, 47, 51, 52, 54, 58, 59, 61, 65, 66, 68, 72, 73, 75, 79, 80, 82, 86, 87, 89, 93, 94, 96, 100, 101, 103, 107, 108, 110, 114, 115, 117, 121, 122, 124, 128, 129, 131, 135, 136, 138, 142
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Union of A017005, A017017 and A017041. - Michel Marcus, May 25 2014

Crossrefs

Programs

  • Magma
    [7*Floor((n-1)/3)+2^((n-1) mod 3)+1: n in [1..50]]; // Wesley Ivan Hurt, May 25 2014
    
  • Maple
    A047370:=n->7*floor((n-1)/3) + 2^((n-1) mod 3)+1; seq(A047370(n), n=1..50); # Wesley Ivan Hurt, May 25 2014
  • Mathematica
    Select[Range[200], MemberQ[{2,3,5}, Mod[#,7]]&] (* or *) LinearRecurrence[ {1,0,1,-1}, {2,3,5,9}, 60] (* Harvey P. Dale, Apr 29 2013 *)
    Table[7*Floor[(n - 1)/3] + 2^Mod[n - 1, 3] + 1, {n, 50}] (* Wesley Ivan Hurt, May 25 2014 *)
  • PARI
    x='x + O('x^50); Vec(x*(2+x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2)) \\ G. C. Greubel, Feb 21 2017

Formula

G.f.: x*(2+x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4, with a(1)=2, a(2)=3, a(3)=5, a(4)=9. - Harvey P. Dale, Apr 29 2013
a(n) = 7*floor((n-1)/3)+2^((n-1) mod 3)+1. - Gary Detlefs, May 25 2014
a(n) = (1/9)*(21*n+4*sqrt(3)*sin((2*Pi*n)/3)-6*cos((2*Pi*n)/3)-12). - Alexander R. Povolotsky, May 25 2014
a(3k) = 7k-2, a(3k-1) = 7k-4, a(3k-2) = 7k-5. - Wesley Ivan Hurt, Jun 10 2016

Extensions

More terms from Wesley Ivan Hurt, May 25 2014