cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047390 Numbers that are congruent to {0, 3, 5} mod 7.

Original entry on oeis.org

0, 3, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28, 31, 33, 35, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, 63, 66, 68, 70, 73, 75, 77, 80, 82, 84, 87, 89, 91, 94, 96, 98, 101, 103, 105, 108, 110, 112, 115, 117, 119, 122, 124, 126, 129, 131, 133, 136, 138, 140, 143
Offset: 1

Views

Author

Keywords

Comments

Also numbers k such that k*(k+2)*(k+4) is divisible by 7. - Bruno Berselli, Dec 28 2017

Crossrefs

Programs

  • Magma
    [n: n in [0..122] | n mod 7 in [0, 3, 5]];  // Bruno Berselli, Mar 29 2011
    
  • Maple
    seq(2*n+floor(n/3)+(n^2 mod 3), n=0..52); # Gary Detlefs, Mar 19 2010
  • Mathematica
    Select[Range[0,150], MemberQ[{0,3,5}, Mod[#,7]]&] (* Harvey P. Dale, Dec 07 2011 *)
    CoefficientList[Series[x (3 + 2 x + 2 x^2)/((1 - x)^2 (1 + x + x^2)), {x, 0, 70}], x] (* Vincenzo Librandi, Nov 02 2014 *)
  • PARI
    is(n)=!!setsearch([0,3,5],n%7) \\ Charles R Greathouse IV, Nov 09 2014
    
  • PARI
    a(n)=(7*n-5)\3 \\ Charles R Greathouse IV, Nov 09 2014
  • Python
    import math
    a = lambda n: 2*(n-1)+math.ceil((n-1)/3.0)
    for n in range(1,101): print(a(n), end = ", ") # Karl V. Keller, Jr., Nov 01 2014
    

Formula

a(n) = 2*n + floor(n/3) + (n^2 mod 3), with offset 0, a(0)=0. - Gary Detlefs, Mar 19 2010
From Bruno Berselli, Mar 29 2011: (Start)
G.f.: x^2*(3 + 2*x + 2*x^2)/((1 - x)^2*(1 + x + x^2)).
a(n) = (1/3)*(7*n - 6 - A049347(n-1)) = A047391(n) - A079978(n-1). (End)
a(n) = n + ceiling(4*(n-1)/3) - 1. - Arkadiusz Wesolowski, Sep 18 2012
a(n) = 2*(n-1) + ceiling((n-1)/3). - Karl V. Keller, Jr., Nov 01 2014
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 7*n/3 - 2 - 2*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3*k) = 7*k-2, a(3*k-1) = 7*k-4, a(3*k-2) = 7*k-7. (End)