A047425 Numbers that are congruent to {3, 4, 5, 6} mod 8.
3, 4, 5, 6, 11, 12, 13, 14, 19, 20, 21, 22, 27, 28, 29, 30, 35, 36, 37, 38, 43, 44, 45, 46, 51, 52, 53, 54, 59, 60, 61, 62, 67, 68, 69, 70, 75, 76, 77, 78, 83, 84, 85, 86, 91, 92, 93, 94, 99, 100, 101, 102, 107, 108, 109, 110, 115, 116, 117, 118, 123, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [3, 4, 5, 6]]; // Wesley Ivan Hurt, May 31 2016
-
Maple
A047425:=n->8*floor((n-1)/4)+((n-1) mod 4)+3: seq(A047425(n), n=1..100); # Wesley Ivan Hurt, May 31 2016
-
Mathematica
Flatten[# + {3, 4, 5, 6} &/@(8*Range[0, 15])] (* Harvey P. Dale, Jun 26 2011 *)
Formula
G.f.: x*(3+x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = 8*floor((n-1)/4) + ((n-1) mod 4) + 3.
a(n) = OR(n-1, 1) + OR(n-1, 2). - Gary Detlefs, Oct 20 2013
From Wesley Ivan Hurt, May 31 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (4*n-1-i^(2*n)-(1-i)*i^(-n)-(1+i)*i^n)/2 where i=sqrt(-1).
E.g.f.: 2 + sin(x) - cos(x) + 2*x*sinh(x) + (2*x - 1)*cosh(x). - Ilya Gutkovskiy, May 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2-sqrt(2))/4. - Amiram Eldar, Dec 26 2021
Comments