cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047425 Numbers that are congruent to {3, 4, 5, 6} mod 8.

Original entry on oeis.org

3, 4, 5, 6, 11, 12, 13, 14, 19, 20, 21, 22, 27, 28, 29, 30, 35, 36, 37, 38, 43, 44, 45, 46, 51, 52, 53, 54, 59, 60, 61, 62, 67, 68, 69, 70, 75, 76, 77, 78, 83, 84, 85, 86, 91, 92, 93, 94, 99, 100, 101, 102, 107, 108, 109, 110, 115, 116, 117, 118, 123, 124
Offset: 1

Views

Author

Keywords

Comments

Complement of numbers congruent to {0, 1, 2, 7} mod 8. - Jaroslav Krizek, Dec 19 2009
In general, sequences congruent to {a, a + i, a + 2i, ..., a + pi} mod k and a + p*i < k have a general form of (k - i*p)*floor(n/p) + i*n + a, from offset 0. - Gary Detlefs, Oct 20 2013

Crossrefs

Programs

Formula

G.f.: x*(3+x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = 8*floor((n-1)/4) + ((n-1) mod 4) + 3.
a(n) = OR(n-1, 1) + OR(n-1, 2). - Gary Detlefs, Oct 20 2013
From Wesley Ivan Hurt, May 31 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (4*n-1-i^(2*n)-(1-i)*i^(-n)-(1+i)*i^n)/2 where i=sqrt(-1).
a(2k) = A047406(k), a(2k-1) = A047621(k). (End)
E.g.f.: 2 + sin(x) - cos(x) + 2*x*sinh(x) + (2*x - 1)*cosh(x). - Ilya Gutkovskiy, May 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2-sqrt(2))/4. - Amiram Eldar, Dec 26 2021